Processes to Produce Secure
Software

Towards more Secure Software

Volume II
Contributed Papers

Software Process Subgroup of the Task Force on
Security across the Software Development Lifecycle

National Cyber Security Summit
March 2004

Edited by Samuel T. Redwine, Jr. and Noopur Davis

Processes to Produce Secure
Software

Towards more Secure Software

Volume II

Contributed Papers

Software Process Subgroup of the Task Force on
Security across the Software Development Lifecycle
National Cyber Security Summit

March 2004

Edited by Samuel T. Redwine, Jr. and Noopur Davis

Copyright © 2004 Samuel T. Redwine, Jr. and Noopur Davis
Sections may be marked with their own copyright, which supersedes.

Authors of unmarked sections may exercise full rights to their section.

Except as explicitly restricted, permission is granted for free usage of all or portions of
this document including for derived works provided proper acknowledgement is given
and notice of its copyright is included.

NO WARRANTY

THIS MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. THE EDITORS,
AUTHORS, CONTRIBUTORS, COPYRIGHT HOLDERS, MEMBERS OF CYBER
SECURITY SUMMIT SECURITY ACROSS THE SOFTWARE DEVELOPMENT
LIFECYCLE TASK FORCE, THEIR EMPLOYERS, THE CYBER SECURITY
SUMMIT SPONSORING ORGANIZATIONS, ALL OTHER ENTITIES
ASSOCIATED WITH REPORT, AND ENTITIES AND PRODUCTS MENTIONED
WITHIN THE REPORT MAKE NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. NO WARRANTY OF ANY KIND IS MADE WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of
the trademark holder.

Foreword

The Software Process Subgroup within the Task Force on Security across the Software
Development Lifecycle of the Cyber Security Summit — Co-Chaired by Sam Redwine
(JMU), Geoff Shively (PivX), and Gerlinde Zibulski (SAP) — produced this report. The
Task Force and its Subgroups were established December 2-3 in San Jose, California at
the Cyber Security Summit sponsored by the Department of Homeland Security (DHS)
and several industry groups. The three-month effort to produce this report, spanning
December 2003 through February 2004, is part of the DHS-private sector partnership.
The Subgroup’s life should extend beyond the production of this report, but its specific
activities may vary.

This Volume II of the report collects material supplied to the Subgroup.
Editors:

Samuel T. Redwine, Jr.
Noopur Davis

Contributors to Volume 11I:

Anthony Hall — Praxis Critical Systems

Roderick Chapman — Praxis Critical Systems

Noopur Davis — Software Engineering Institute

Joe Jarzombek — Information Assurance Directorate Office of the Assistant Secretary
of Defense (Networks and Information Integration)

Richard C. Linger — Software Engineering Institute

Peter Neumann — SRI International

Stacy J. Prowell — University of Tennessee

The editors want to thank the contributors to Volume II for their efforts and for the many
review comments they provided. In part, Sam Redwine’s work was supported by
Virgina’s Commonwealth Technology Research Fund and the NIST’s Critical
Infrastructure Protection Project through the Institute for Infrastructure and Information
Assurance (31A) at James Madison University.

The Software Process Subgroup members are listed in the Foreword to Volume I.

Any corrections or comments to this report should be sent to Sam Redwine —
redwinst@jmu.edu.

Table of Contents

Principles for Assuredly Trustworthy Composable Architectures
Peter G. Neumann
SRI

Software Engineering: Correctness by Construction
Anthony Hall and Rod Chapman
Praxis Critical Systems

Developing Secure Software with Cleanroom Software Engineering
Richard C. Linger Stacy J. Prowell
Software Engineering Institute University of Tennessee

Security and Capability Maturity Models
Joe Jarzombek
Office of the Assistant Secretary of Defense (Networks and Information Integration)

The Team Software Process
Noopur Davis
Software Engineering Institute

Principles for Assuredly Trustworthy
Composable Architectures:

February 20, 2004

(©Copyright 2004 SRI International, freely available for noncommercial reuse

Peter G. Neumann, Principal Investigator

Principal Scientist, Computer Science Laboratory

SRI International EL-243, 333 Ravenswood Ave

Menlo Park, California 94025-3493, USA
Neumann@csl.sri.com; http://www.csl.sri.com/neumann
Telephone: 1-650-859-2375; Fax: 1-650-859-2844

With the permission of the author, this document consists primarily of Chapter 2 (with some
introductory material) from the emerging final report, Principled Assuredly Trustworthy
Composable Architectures, for SRI Project 11459, Contract number N66001-01-C-8040, as
part of DARPA’s Composable High-Assurance Trustworthy Systems (CHATS) program, for
which Douglas Maughan was the Program Manager. The draft text of the entire report is
available on-line:

http://www.csl.sri.com/neumann/chats4.html as well as
http://www.csl.sri.com/neumann/chats4.pdf

Abstract

This report presents the results of our CHATS project. We characterize problems in and
approaches to attaining computer system and network architectures with the overall goal
of being better able to develop and more rapidly configure highly trustworthy systems and
networks able to satisfy critical requirements (including security, reliability, survivability,
performance, and other vital characteristics). We consider ways to enable effective systems
to be predictably composed out of interoperable subsystems, to provide the required trust-
worthiness — with reasonably high assurance that the critical requirements will be met under
the specified operational conditions, and (hopefully) do something sensible outside of that
range of operational conditions. This work thus spans the entire set of goals of the DARPA
CHATS program trustworthiness, composability, and assurance and much more.

By trustworthiness, we mean simply worthy of being trusted to fulfill whatever critical
requirements may be needed for a particular component, subsystem, system, network, ap-
plication, mission, enterprise, or other entity. Trustworthiness requirements might typically
involve (for example) attributes of security, reliability, performance, and survivability under
a wide range of potential adversities.

This report should be particularly valuable to system developers who have the need and/or
the desire to build systems and networks that are significantly better than conventional
mass-market software. The conclusions of the report will also be useful to government
organizations that fund research and development efforts.

Executive Summary

We are confronting an extremely difficult problem namely, how to attain demonstrably
trustworthy systems and networks that need to operate under stringent requirements for
security, reliability, survivability, and other critical attributes, and that can evolve gracefully
and predictably over time despite changes in requirements, hardware, and communications
technologies. In particular, we seek to establish a sound basis for the creation of trustworthy
systems and networks that can be easily composed out of subsystems and components, with
predictably high assurance, and also hopefully do something sensible when forced to operate
outside of the expected normal range of operational conditions. Toward this end, we examine
a set of principles for achieving trustworthiness, consider constraints that might enhance
composability, pursue architectures and trustworthy subsystems that are inherently likely to
result in trustworthy systems and networks, constrain administrative practices in such a way
that reduces the risks of bad operations, and seek approaches that can significantly increase
assurance. 'The approach is intended to be theoretically sound as well as practical and
realistic. We also outline directions for new research and development that could significantly
improve the future for dependably trustworthy systems.

With respect to the future of trustworthy systems and networks, perhaps the most impor-
tant recommendations involve the urgent establishment and use of realistic highly disciplined
and principle-driven architectures, as well as development practices that systematically en-
compass trustworthiness and assurance as integral parts of what must become coherent
development processes and sound subsequent operational practices. Only then can we have
any realistic assurances that our computer-communication infrastructures — and indeed our
critical national infrastructures — will be able to behave as needed, in times of crisis as
well as in normal operation. This challenge does not have easy turn-the-crank solutions.
Addressing it requires considerable skills, understanding, experience, education, and enlight-
ened management. Success can be greatly increased in many ways, including the availability
of dependable hardware components, robust system and network architectures, consistent
use of good software engineering practices, careful attention to human-oriented interface de-
sign, well-conceived and sensibly used programming languages, compilers that are capable
of enhancing the trustworthiness of source code, techniques for increasing interoperability
among heterogeneous distributed systems and subsystems, methods and tools for analysis
and assurance, design and development of systems that are inherently easier to administer
and that provide better support for operational personnel, and many other factors. The ab-
sence or relative inadequacy with respect to each of these factors today represents a potential
weak link in a process that is currently riddled with too many weak links. On the other hand,

much greater emphasis on these factors can result in substantially greater trustworthiness,
with predictable results.

The approach taken here is strongly motivated by historical perspectives of promising
research efforts and extensive development experience (both positive and negative) relating
to the development of trustworthy systems. It is also motivated by the practical needs
and limitations of commercial developments as well as some initial successes in inserting
significantly greater discipline into the open-source world. It provides useful guidelines for
disciplined system developments and future research.

As a consequence of the inherent complexity associated with the challenges of developing
and operating trustworthy systems and networks, we urge you to read this report thoroughly,
in its entirety. However, to the inexperienced developer or to the experienced developer who
believes in seat-of-the-pants software creation, we offer a few words of caution. Many of
the individual concepts should be well known to many of you. If you are looking for easy
answers, you may be sadly disappointed; indeed, each chapter should in turn convince you
that there are no easy answers. However, if you are looking for some practical advice on
how to develop systems that are substantially more trustworthy than what is commercially
available today, you may find many encouraging directions to pursue.

Although there are some novel concepts in this report, our main thrust involves various
approaches that can make better use of what we have learned over the past many years in
the research community and that can be used to better advantage in production systems.
Many of the lessons relating to serious trustworthiness can be drawn from past research and
prototype development; however, those lessons have been largely ignored in the commercial
development communities. We believe that observance of the approaches described here
would greatly improve the situation. The opportunities for this within the open-source
community are considerable, although also applicable to closed-source proprietary systems
(despite various caveats).

Chapter 1

The Foundations of This Report

We essay a difficult task; but there is no merit save in difficult tasks.

Ovid

In the context of this report, the term “trustworthy” is used in a broad sense that is
meaningful with respect to any given set of requirements, policies, properties, or other def-
initional entities. Such requirements might include (for example) attributes of security,
reliability, performance, and survivability under a wide range of potential adversities. Secu-
rity requirements typically might specify properties relating to integrity, confidentiality, and
ability to withstand denial of service attacks. Reliability requirements might include prop-
erties relating to the ability to tolerate hardware failures and software flaws, characterization
of acceptable degradation in the face of untolerated faults, probabilities of success, expected
mean times between failures, and so on. Performance requirements might include aggre-
gate throughput measures, processing speeds, storage capacities, and guaranteed real-time
response (for example). Survivability requirements address continued system availability
despite numerous adversities that could compromise the intended goals, and thus (for ex-
ample) encompass aspects of security, reliability, performance, and other relevant critical
requirements (e.g., [25]). Trustworthiness can then be thought of as the hopefully well-
founded belief that a given system, network, or component will satisfy its requirements, and
particularly its critical requirements. Assurance provides some sort of measure or indica-
tion of the likelihood that the desired trustworthiness is actually well founded. That is, a
system can be said to be trustworthy (with respect to its desired requirements) with some
level of assurance that it will behave as expected.

The concept of trustworthiness is essentially indistingushable from what is alternatively
called dependability [2, 3, 20, 34], particularly within the IEEE community. In its very
early days, dependability was focused primarily on hardware faults and quickly extended to
software faults, and soon thereafter generalized to a notion of faults that includes security
threats. Thus, dependability’s notions of fault prevention, fault tolerance, fault removal,
and fault forecasting (the last of which in turn is more or less equivalent to assurance)
seem to encompass everything that trustworthiness does, albeit with occasionally different
terminology.

Note that we make a careful distinction throughout between trust and trustworthiness.
Trustworthiness implies that something is worthy of being trusted. Trust merely implies

that you trust it whether it is trustworthy or not, perhaps because you have no alternative,
or because you are naive, or perhaps because you do not even realize that trustworthiness is
necessary, or because of some other reason. We generally eschew the terms trust and trusted
unless we specifically mean trust rather than trustworthiness.

There are many R&D directions that we believe are important for the short- and long-
term future for the computer and network communities at large, for DARPA developers
and developers generally, for the CHATS program as a whole, and specifically for our CHATS
project. The basis of our project is the exploration of a few of the potentially most timely
and significant research directions, which are summarized as follows.

Principles. We revisit fundamental principles of trustworthy system development, cull
out those likely to be most effective, explore their practical limitations, and provide a
basis for principled architectures, principled development, and principled operation.

Composability. We explore existing obstacles to achieving seamless composability and
techniques for attaining practical composability in the future. Composability is mean-
ingful at many layers of abstraction, for components, subsystems, networked systems,
and networks of networks. It is also applicable to policies, protocols, specifications, for-
mal representations, and proofs. Subsystem composability takes on a variety of forms,
including sequential (with or without feedback, with or without recursion, etc.) and
parallel execution.

Trustworthy foundations. We seek to provide a sound basis for specifications, im-
plementation, trustworthiness, and assurance of that trustworthiness for composable
interoperable components, with predictable behavior when composed.

Trustworthy composable architectures. We seek to establish composable open
distributed-system network-oriented architectures capable of fulfilling critical security,
reliability, survivability, and performance requirements, while being readily adaptable
to widely differing applications, different hardware and software providers, and changing
technologies. By architecture, we specifically mean both the structure of systems and
networks and the design of their functional interfaces (at various layers of abstraction).

Trustworthy protocols. We need to develop new protocols and/or extend exist-
ing protocols that effectively mask the peculiarities of various networking technologies
wherever possible, but able to accommodate a wide range of technologies (e.g., wireless
and wired, optical and electronic, etc.), and capable of addressing all relevant critical
requirements. This is a very difficult challenge, and necessarily needs the involvement
of the IETF, NIST standards efforts, and the development communities.

Principled operational practice. We need to bring the above concepts into the
realm of operational practice, which is seriously in need of greater dependability and
controllability. Many of the concepts considered here have considerable potential toward
that end.

Throughout the history of efforts to develop trustworthy systems and networks, there is an
unfortunate shortage of observable long-term progress. Significant research and development

results are typically soon forgotten or else widely ignored in practice. Systems have come and
gone, programming languages have come and (sometimes) gone, and certain specific systemic
vulnerabilities have come and gone. However, many generic classes of vulnerabilities seem
to persist forever such as buffer overflows, race conditions, off-by-one errors, mismatched
types, divide-by-zero crashes, and unchecked procedure-call arguments, to name just a few.
Overall, it is primarily only the principles that have remained inviolable at least in
principle — despite their having been widely ignored in practice. It is time to change
that unfortunate situation, and honor the principles.

A paper [27] summarizing this report is part of the DISCEX3 proceedings, from the April
2003 DARPA Information Survivability Conference and Exposition.

Chapter 2

Fundamental Principles of
Trustworthiness

In this chapter, we itemize, review, and interpret various design and development principles
that if properly observed can advance composability, trustworthiness, assurance, and other
attributes of systems and networks, within the context of the CHATS effort. We consider the
relative applicability of those principles, as well as some of the problems they may introduce.

2.1 Introduction

Everything should be made as simple as possible — but no simpler.
Albert Einstein

A fundamental hypothesis motivating this report is that achieving assurable trustwor-
thiness requires much greater observance of certain underlying principles. We assert that
careful attention to such principles can greatly facilitate the following efforts.

e Establishment of composable open distributed-system network-oriented architectures
capable of fulfilling critical security, reliability, survivability, and performance require-
ments, while being readily adaptable to widely differing applications, different hardware
and software providers, and changing technologies. By architecture, we specifically mean
both the structure of systems and networks and the design of their functional interfaces,
at various layers of abstraction.

e Development of specifications, implementation, trustworthiness, and assurance of that
trustworthiness for composable interoperable components, with predictable behavior
when those components are composed.

e Attainment of assuredly trustworthy systems and networks, capable of addressing all
relevant critical requirements, with new or extended protocols that mask the peculiari-
ties of various networking technologies wherever advantageous.

The benefits of principled system and software development cannot be overestimated,
especially in the early stages of the development cycle. Principled design and software

development can stave off many problems later on in implementation, maintenance, and
operation. Huge potential cost savings can result from diligently observing relevant principles
throughout the development cycle. But the primary concept involved is that of disciplined
development; there are many methodologies that provide some kind of discipline, and all of
those can be useful in some cases.

In concept, most of the principles discussed here are fairly well known and understood
by system cognoscenti. However, their relevance is often not generally appreciated by peo-
ple with little development or operational experience. Not wishing to preach to the choir,
we do not dwell on elaborating the principles themselves. Instead, we concentrate on the
importance and applicability of these principles in the development of systems with critical
requirements and especially secure systems and networks. The clear implication is that
disciplined understanding and observance of the most effective of these principles can have
enormous benefits to developers and system administrators, and also can aid user communi-
ties. However, we also explore various potential conflicts within and among these principles,
and emphasize that those conflicts must be thoroughly understood and respected. System
development is intrinsically complicated in the face of critical requirements. It is important
to find ways to manage that complexity, rather than mistakenly believing that it is avoidable.

2.2 Risks Resulting from Untrustworthiness

As noted above, trustworthiness is a concept that encompasses being worthy of trust with
respect to whatever critical requirements are in effect, often relating to security, reliabil-
ity, guarantees of real-time performance and resource availability, survivability in spite of a
wide range of adversities, and so on. Trustworthiness depends on hardware, software, com-
munications media, power supplies, physical environments, and ultimately people in many
capacities — requirements specifiers, designers, implementers, users, operators, maintenance
personnel, administrators, and so on.

There are numerous examples of untrustworthy systems, networks, computer-related ap-
plications, and people. We indicate the extensive diversity of cases reported in the past with
just a few tidbits relevant to each of various categories. See Computer-Related Risks [24]
and the Illustrative Risks index [28] for numerous further examples and references involving
many different types of system applications. (In the Illustrative Risks document, descrip-
tors indicate relevance to loss of life, system survivability, security, privacy, development
problems, human interface confusions, etc.)

e Safety

— Aviation disasters, attributable to problems with airframes, avionics computer
hardware and software, badly designed human interfaces, pilots, air-traffic con-
trol systems, air-traffic controllers, maintenance crews, airport security lapses, etc.:
KAL 007 (flying on erroneous autopilot course), Air New Zealand crash into Mount
Erebus (erroneous course data), Lauda Air (thrust reverser accidentally deployed
in flight), Iranian Airbus shootdown (bad operational interfaces). Black Hawk he-
licopter problems.

— Medical disasters, attributable to hardware flaws and malfunctions and software
bugs, confusing human interfaces: Therac 25 (nonatomic transition from high-
intensity to low-intensity mode), Database errors resulting in operation failures,
Electromagnetic interference (pacemakers, defibrillators), Electrocution (e.g., a heart-
monitoring equipment with a monitoring jack that plugged into an electrical wall
socket).

e Reliability and availability

— Failures in defense systems, control systems, telecommunications systems, space,
financial systems, etc.: Patriot missiles missing Scuds (excessive clock drift), York-
town Aegis missile cruiser disabled (Windows NT divide by zero), ARPANET col-
lapse (1980),, AT&T long-distance collapse (1990), 1st Shuttle launch (Columbia
backup computer synchronization problem), Discovery laser-beam experiment (el-
evation of target in miles, not feet), Massive power outages (propagating effects).

e Security (The situation here is truly deplorable and diverse. The Illustrative Risks
index [28] includes many pages of reported security problems.)

— Unintentional security flaws
— Intentionally installed trapdoors, Trojan horses, etc.

— Insider and outsider exploitations involving loss of confidentiality, loss of integrity,
denials of service, viruses, worms, spam, financial frauds and misuse, etc.

e Survivability

— Survivability ultimately depends on reliability, security, and various other attributes.
(For example, see [25].) Some of the problems noted above involve failures of sys-
tem and network survivability, as a result of hardware and software malfunctions,
exploitations of security vulnerabilities, accidents, malice, electromagnetic interfer-
ence and other environmental events, etc.

e Privacy.

— Privacy is often relegated to a second-order consideration. Privacy can in some
cases be aided by appropriate technology, but many of the misues are the result of
misuse by trusted insiders or are extrinsic — involving indirect misuse external to
computer systems. Identity theft is an increasingly pervasive example.

2.3 Trustworthiness Principles

Willpower s always more efficient than mechanical enforcement, when it works.
But there is always a size of system beyond which willpower will be inadequate.
Butler Lampson

Developing and operating complex systems and networks with critical requirements de-
mands a different kind of thinking from that used in routine programming. We begin here
by considering various sets of principles, their applicability, and their limitations.

We first consider the historically significant Saltzer Schroeder principles, followed by sev-
eral other approaches.

2.3.1 Saltzer—Schroeder Security Principles, 1975

The ten basic security principles formulated by Saltzer and Schroeder [35] in 1975 are all still
relevant today, in a wide range of circumstances. In essence, these principles are summarized
with a CHATS-relevant paraphrased explanation, as follows:

e Economy of mechanism: Seek design simplicity (where effective).

o Fail-safe defaults: Deny accesses unless explicitly authorized (rather than
permitting accesses unless explicitly denied).

e Complete mediation: Check every access, without exception.

e Open design: Do not assume that design secrecy will enhance security.

e Separation of privilege: Use separate privileges or even multiparty authoriza-
tion (e.g., two keys) to reduce misplaced trust.

e Least privilege: Allocate minimal (separate) privileges according to need-to-
know, need-to-modify, need-to-delete, need-to-use, and so on. Existence of
overly powerful mechanisms such as superuser is inherently dangerous.

e Least common mechanism: Eschew sharing of trusted multipurpose mecha-
nisms, in particular, minimizing the need for and use of overly powerful mech-
anisms such as superuser. As one example of the flaunting of this principle,
exhaustion of shared resources provides a huge source of covert storage chan-
nels, whereas the natural sharing of real calendar-clock time provides a source
of covert timing channels.

e Psychological acceptability: Strive for ease of use and operation — for ex-
ample, with easily understandable and forgiving interfaces.

e Work factor: Make cost-to-protect commensurate with threats and expected
risks.

e Recording of compromises: Provide nonbypassable tamperproof trails of
evidence.

Remember that these are principles, not hard-and-fast rules. By no means should they
be interpreted as ironclad, especially in light of some of their mutual contradictions.

The Saltzer—Schroeder principles grew directly out of the Multics experience (e.g., [32]).
Each of these principles has taken on almost mythic proportions among the security elite,
and to some extent buzzword cult status among many fringe parties. Therefore, perhaps it
is not necessary to explain each principle in detail — although there is considerable depth
of discussion underlying each principle. (Careful reading of the Saltzer—Schroeder paper [35]
is recommended if it is not already a part of your library. In addition, Chapter 6 of Matt
Curtin’s book [11] on “developing trust” by which he might really hope to be “developing
trustworthiness” provides some useful further discussion of these principles.)

There are two fundamental caveats regarding these principles. First, each principle by
itself may be useful in some cases and not in others. The second is that when taken in
combinations, groups of principles are not necessarily all reinforcing; indeed, they may seem
to be mutually in conflict. Consequently, any sensible development must consider appropriate
use of each principle in the context of the overall effort. Examples of a principle being both
good and bad as well as examples of interprinciple interference are scattered through
the following discussion. Various caveats are considered in the penultimate section.

Table 2.1 examines the applicability of each of the Saltzer—Schroeder principles to the
CHATS goals of composability, trustworthiness, and assurance (particularly with respect to
security, reliability, and other survivability-relevant requirements).

Table 2.1: CHATS Relevance of Saltzer Schroeder to CHATS Goals

| Principle | Composability Trustworthiness | Assurance
Economy of Beneficial within a Important aid Can simplify
mechanism sound architecture; to sound design; analysis
requires great care requires great care
Fail-safe Some help, but not Simplifies design, Can simplify
defaults fundamental use, operation analysis
Complete Very beneficial with Vital, but hard Can simplify
mediation disjoint object types to achieve with no analysis

compromisability

Open design

Design documentation is
very beneficial among
multiple developers

Secrecy of design is,

is bad assumption;
open design requires
strong system security

Assurance is mostly
irrelevant in

weak systems;

open design enables
open analysis (+/-)

Separation of

Very beneficial if

Avoids many

Focuses

privilege preserved by composition | common flaws analysis

Least Very beneficial if Limits flaw effects; Focuses
privilege preserved by composition | simplifies operation analysis

Least common | Beneficial unless there is Finesses some Simplifies
mechanism natural polymorphism common flaws analysis
Psychological | Could help a little Affects mostly usability | Ease of use
acceptability if nonconflicting and operations can contribute

Work factor

Relevant especially for
crypto algorithms, but not

Misguided if system
easily compromised

Gives false sense
of security under

their implementations; from below, spoofed, nonalgorithmic

may not be composable bypassed, etc. compromises
Compromise Not an impediment After-the-fact, Not primary
recording if distributed but useful contributor

In particular, complete mediation, separation of privilege, and allocation of least privilege
are enormously helpful to composability and trustworthiness. Open design can contribute
significantly to composability, when subjected to internal review and external criticism.
However, there is considerable debate about the importance of open design with respect to
trustworthiness, with some people still clinging tenaciously to the notion that security by
obscurity is sensible — despite risks of many flaws being so obvious as to be easily detected
externally, even without reverse engineering. Indeed, the recent emergence of very good
decompilers for C and Java, and the likelihood of similar reverse engineering tools for other

languages suggests that such attacks are becoming steadily more practical.

Overall, the

assumption of design secrecy and the supposed unavailability of source code is often not a
deterrent, especially with ever-increasing skills among black-box system analysts. However,

there are of course cases in which security by obscurity is unavoidable — as in the hiding
of private and secret cryptographic keys, even where the cryptographic algorithms and im-
plementations are public. There are other cases in theory where weak links can be avoided
(e.g., zero-knowledge protocols that can establish a shared key without any part of the pro-
tocol requiring secrecy), although in practice they may be undermined by compromises from
below (e.g., involving trusted and supposedly trustworthy insiders subverting the underlying
operating systems) or from outside (e.g., involving penetrations of the operating systems
and masquerading as legitimate users). (See Section 2.3.)

From its beginning, the Multics development was strongly motivated by a set of principles
— some of which were originally stated by Ted Glaser and Peter Neumann in the first section
of the very first edition of the Multics System Programmers’ Manual in 1965. For example,
with almost no exceptions, no coding effort was begun until a written specification had been
approved; with almost no exceptions, all code was written in a subset of PL/I for which a
compiler (early PL, or EPL) had been written by Doug Mcllroy and Bob Morris. In addition
to the Saltzer Schroeder principles, further insights can be found in a paper by Fernando
Corbatd, Saltzer, and Charlie Clingen [10] and in Corbat$’s Turing lecture [9].

2.3.2 Related Principles, 1969 and later

Another view of principled system development was given by Neumann in 1969 [22], re-
lating to what is often dismissed as merely “motherhood” — but which in reality is both
very profound and very difficult to follow consistently. The motherhood principles under
consideration in that paper (alternatively, you might consider them just as desirable system
attributes) included automatedness, availability, convenience, debuggability, documented-
ness, efficiency, evolvability, flexibility, forgivingness, generality, maintainability, modularity,
monitorability, portability, reliability, simplicity, and uniformity. Some of those attributes
indirectly affect security and trustworthiness, whereas others affect the acceptability, utility,
and future life of the systems in question. Considerable discussion in [22] was also devoted
to (1) the risks of local optimization and the need for a more global awareness of less obvious
downstream costs of development (e.g., writing code for bad specs and debugging bad code),
operation, and maintenance; and (2) the benefits of higher-level implementation languages
(which prior to Multics were rarely used for the development of operating systems [9, 10]).

Fundamental to trustworthiness is the extent to which systems and networks can avoid
being compromised by malicious or accidental human behavior and by events such as hard-
ware malfunctions and so-called acts of God. In [25], we consider compromise from outside,
compromise from within, and compromise from below, with fairly intuitive meanings. These
notions appear throughout this report.

In later work and more recently in [25], Neumann augmented and refined some of the
Saltzer—Schroeder principles. Although most of those principles might seem more or less
obvious, they are of course full of interpretations and hidden issues. We summarize an
extended set of principles here, particularly as they might be interpreted in the CHATS
context.

e Sound architecture. Recognizing that it is much better to avoid design errors than
to attempt to fix them later, the importance of architectures inherently capable of

evolvable, maintainable, robust implementations is enormous — even in an open-source
environment. The value of a well-thought-out architecture is considerable in open-
source systems. The value in closed-source proprietary systems could also be significant,
if it were thought through early on, although architectural foresight is often impeded
by legacy compatibility requirements that tend to lock into inflexible architectures.
Good interface design is as fundamental to good architectures as is their structure.
Both the architectural structure and the architectural interfaces (particularly the visible
interfaces, but also some of the internal interfaces that must be interoperable) benefit
from careful early specification.

Minimization of what must be trustworthy. Trustworthiness should be situated
where it is most needed, rather than widely distributed (with potentially many weak
links) or centralized (with a single weak link). Trustworthiness is expensive to imple-
ment and to ensure, and as a consequence significant benefits can result from minimizing
what has to be trustworthy. This principle can contribute notably to sound architec-
tures.

Abstraction. The primitives at any given logical or physical layer should be relevant
to the functions and properties of the objects at that layer, and should mask lower-layer
detail where possible. Ideally, the specification of a given abstraction should be in terms
of objects meaningful at that layer, rather than requiring lower-layer (e.g., machine
dependent) concepts. Abstractions at one layer can be related to the abstractions at
other layers in a variety of ways, thus simplifying the abstractions at each layer rather
than collapsing different abstractions into a more complex single layer. Horizontal and
vertical abstractions are considered in Chapter 3.

Encapsulation. Details that are relevant to a particular abstraction should be iso-
lated within the implementation of that abstraction and the lower layers on which the
implementation depends. One example of encapsulation involves information hiding

for example, keeping internal state information hidden. Another example involves
masking the idiosyncrasies of physical devices from the user interface, as well as from
higher-layer system interfaces.

Modularity. Modularity relates to the characteristic of system structures in which
different entities (modules) can be relatively loosely coupled and combined to satisfy
overall system requirements, whereby a module could be modified or replaced as long
as the new version satisfies the given interface specification. In general, modularity is
most effective when the modules reflect specific abstractions and provide encapsulation
within each module.

Layered and distributed protection. Protection should be distributed to where it
is most needed, and should reflect the semantics of the objects being protected. With
respect to the reality of implementations that transit entities of different trustworthiness,
layers of protection are vastly preferable to flat concepts such as single sign-on. With
respect to psychological acceptability, single sign-on has enormous appeal even if
it can leave enormous security vulnerabilities as a result of compromise from outside,

from within, or from below in both distributed and layered environments. (Of particular
relevance here are work in distributed system protection and digital certificates such as
SDSI/SPKI, and digital rights management (e.g., [7, 17, 38]).)

Constrained dependency. Unguarded dependencies on less trustworthy entities
should be avoided. However, it is possible in some cases to surmount the relative
untrustworthiness of mechanisms on which certain functionality depends as in the
types of trustworthiness-enhancing mechanisms enumerated in Chapter 3. In essence,
do not trust anything unless you are satisfied with demonstrations of its trustworthiness.

Object orientation. The OO paradigm bundles together abstraction, encapsulation,
modularity of state information, inheritance (subclasses inheriting the attributes of their
parent classes — e.g., for functionality and for protection), and subtype polymorphism
(subtype safety despite the possibility of application to objects of different types). This
paradigm facilitates programming generality and software reusability, and if properly
used can enhance software development. This is a contentious topic, in that most of
the OO methodologies and languages are somewhat sloppy with respect to inheritance.
(Jim Horning notes that the only OO language he knows that takes inheritance seriously
was the DEC/ESL OWL/Trellis, which was a descendant of CLU.)

Separation of policy & mechanism. Statements of policy should avoid inclusion
of implementation-specific details. Furthermore, mechanisms should be policy-neutral
where that is advantageous in achieving functional generality. However, this principle
must never be used in the absence of understanding about the range of policies that
might be usefully implemented. There is a temptation to avoid defining meaningful
policies, deferring them until later in the development — and then discovering that the
desired policies cannot be realized with the given mechanisms. This is a characteristic
chicken-and-egg problem with abstraction.

Separation of duties. In relation to separation of privilege, separate classes of duties
of users and computational entities should be identified, so that distinct system roles
can be assigned accordingly. Distinct duties should be treated distinctly, as in system
administrators, system programmers, and unprivileged users.

Separation of roles. In relation to separation of privilege, the roles recognized by
protection mechanisms should correspond to the various duties. For example, a single
all-powerful superuser is intrinsically in violation of separation of duties, separation of
roles, separation of privilege, and separation of domains. The separation of would-be
superuser functions into separate roles as in Trusted Xenix is a good example of desir-
able separation. Again there is a conflict between principles: the monolithic superuser
mechanism provides economy of mechanism, but violates other principles. Similarly,
the notion of a single sign-on provides simplicity for the user, but seriously violates
least privilege, separation of concerns, and other principles. In practice, all-powerful
mechanisms are sometimes unavoidable, and sometimes even desirable despite the nega-
tive consequences (particularly if confined to a secure sub-environment). However, they
should be avoided wherever possible.

e Separation of domains. In relation with separation of privilege, domains should be
able to enforce separate roles. For example, a single all-powerful superuser mechanism is
inherently unwise, and is in conflict with the notion of separation of privileges. However,
separation of privileges is difficult to implement if there is inadequate separation of
domains. Separation of domains can help enforce separation of privilege, but can also
provide functional separation as in the Multics ring structure, a kernelized operating
system, or a capability-based architecture.

e Sound authentication. Authentication is a pervasive problem. Nonbypassable au-
thentication should be applicable to users, processes, procedures, and in general to any
active entity or object. Authentication relates to evidence that the identity of an entity
is genuine, that procedure arguments are legitimate, that types are properly matched
when strong typing is to be invoked, and other similar aspects.

e Sound authorization and access control. Authorizations must be correctly and
appropriately allocated, and nonsubvertible (although they are likely to assume that the
identities of all entities and objects involved have been properly authenticated — see
Sound authentication). Crude all-or-nothing authorizations are typically inadequate.
In applications for which user-group-world authorizations are inadequate, access-control
lists and role-based authorizations may be preferable. Finer-grained access controls may
be desirable in some cases, such as capability-based addressing and field-based database
protection.

e Administrative controllability. The facilities by which systems and networks are
administered must be well designed, understandable, well documented, and sufficiently
easy to use without inordinate risks.

e Comprehensive accountability. Well designed and carefully implemented facilities
are essential for comprehensive monitoring, auditing, interpretation, and automated
response (as appropriate). Serious security and privacy issues must be addressed relating
to the overall accountability processes and audit data.

Table 2.2 summarizes the utility of the extended-set principles with respect to the three
goals of the CHATS program acronym, as in Table 2.1.

Table 2.2: CHATS Relevance of Extended-Set Principles to CHATS Goals

| Principle | Composability | Trustworthiness | Assurance
Sound Can considerably Can greatly increase Can increase assurance
architecture facilitate trustworthiness of design and simplify
composition implementation analysis
Minimization of Beneficial, but not Very beneficial with Simplifies design and
trustworthiness fundamental sound architecture implementation analysis
Abstraction Very beneficial with Very beneficial Simplifies analysis
suitable independence | if composable by decoupling it
Encapsulation Very beneficial Very beneficial if Localizes analysis to
if properly done, composable, avoids abstractions and
enhances integration | certain types of bugs their interactions
Modularity Very beneficial Very beneficial Simplifies analysis

if interfaces and
specifications
well defined

if well specified;
overmodularization
impairs performance

by decoupling it
and if modules are
well specified

Layered protection

Very beneficial, but
may impair
performance

Very beneficial if
noncompromisible from
above/within/below

Structures analysis
according to layers
and their interactions

Robust dependency

Beneficial: can
avoid compositional
conflicts

Beneficial: can obviate
design flaws based on
misplaced trust

Robust architectural
structure simplifies
analysis

Object orientation

Beneficial, but
labor-intensive;
can be inefficient

Can be beneficial, but
complicates coding
and debugging

Can simplify analysis
of design, possibly
implementation also

Separation of
policy & mechanism

Beneficial, but
both must compose

Increases flexibility
and evolution

Simplifies analysis

Separation of

Helpful indirectly

Beneficial if

Can simplify analysis

duties as a precursor well defined if well defined
Separation of Beneficial if roles Beneficial if Partitions analysis
roles nonoverlapping properly enforced of design and operation
Separation of Can simplify Allows finer-grain Partitions analysis
domains composition and enforcement and of implementation
reduce side-effects self-protection and operation
Sound Helps if uniformly Huge security benefits, | Can simplify analysis,
authentication invoked aids accountability improve assurance
Sound Helps if uniformly Controls use, Can simplify analysis,
authorization invoked aids accountability improve assurance
Administrative Composability helps Good architecture Control enhances
controllability controllability helps controllability operational assurance
Comprehensive Composability helps Beneficial for Can provide feedback
accountability accountability post-hoc analysis for improved assurance

At this point in our analysis, it should be no surprise that all of these principles can con-
tribute in varying ways to security, reliability, survivability, and other -ilities. Furthermore,
many of the principles and -ilities are linked. We cite just a few of the interdependencies
that must be considered.

For example, authorization is of limited use without authentication when identity is im-
portant. Similarly, authentication may be of questionable use without authorization. In
some cases, authorization requires fine-grained access controls. Least privilege requires some
sort of separation of roles, duties, and domains. Separation of duties is difficult to achieve if
there is no separation of roles. Separation of roles, duties, and domains each must rely on a
supporting architecture.

The Saltzer Schroeder comprehensive accountability principle is particularly intricate, as
it depends critically on many other principles being invoked. For example, accountability is
inherently incomplete without authentication and authorization. In many cases, monitoring
may be in conflict with privacy requirements and other social considerations [12], unless
extremely stringent controls are enforceable. Separation of duties and least privilege are
particularly important here. All accountability procedures are subject to security attacks,
and are typically prone to covert channels as well. Furthermore, the procedures themselves
should be carefully monitored. Who monitors the monitors? (Quis auditiet ipsos audites?)

2.3.3 Principles of Secure Design (NSA, 1993)

Also of interest here is the 1993 set of principles (or perhaps metaprinciples?) of secure
design [5], which emerged from an NSA ISSO INFOSEC Systems Engineering study on
rules of system composition. The study was presented not as a finished effort, but rather
as something that needed to stand the test of practice. Although there is some overlap
with the previously noted principles, the NSA principles are enumerated here as they were
originally documented. Some of these principles are equivalent to “the system should satisfy
certain security requirements” but they are nevertheless relevant. Others might sound
like motherhood. Overall, they represent some collective wisdom.

e The security engineering of a system must not be done independently from the total
engineering of the system.

e A system without requirements cannot fail; it merely presents surprises.
e The system is for the users and not the system designers.
e A systems seldom fully satisfies all of its requirements.

e Many failures of a system to meet its overall requirements are often obvious. However,
failures to meet security requirements are often not obvious.

e In an operational system, it is the users’ mission and information that is at risk, not the
developers’ or evaluators’ information. The accreditor accepts those risks when deciding
to use a system operationally.

e It is only in the context of a system and a security policy that the “security character-
istics” of a component can be defined and evaluated.

e Every component in a system must operate in an environment that is a subset of
its specified environment; [in particular,| every component in a system must operate
in a security environment that is a subset of its specified security environment. (A
component should not be asked to respond to events for which it was not designed
and evaluated.)

e Security is a system problem.

e Keep it simple to make it secure.

e There is no security in uncertainty.

e A system should be evaluatable and evaluated.

e Architectural analysis should not be treated lightly.

e A system is only as strong as its weakest link; the fortress walls of security should all
be high enough. (Note that weak links are often not obvious.)

e A component should protect itself from other components by adhering to the principle
of mutual suspicion.

e A system should be manageable and managed.

e A system should be able to come up in a recognizably secure state.
e A system should recognize error conditions.

e Pay special attention to information flow.

e Secure systems should protect the confidentiality of user data.

e Secure systems should protect the integrity of user data.

e Secure systems should protect the reliability of user processes.

Considerable discussion of these metaprinciples is warranted. For example, “Every com-
ponent in a system must operate in a security environment that is a subset of its specified
environment” implies iteratively that maximum trust is required throughout design and
implementation of the other components, which is a gross violation of our notion of mini-
mization of what must be trustworthy. It would be preferable to require that each component
check that the environment in which it executes is a subset of its specified environment
which is closely related to Schroeder’s notion of mutual suspicion [36], noted further down
the list.

“A system is only as strong as its weakest link” is generally a meaningful statement.
However, some weak links may be more devastating than others, so this statement is overly
simple. In combination with least privilege, separation of domains, and some of the other
principles noted previously, the effects of a particular weak link might be contained or con-
trolled. But then, you might say, the weak link was not really a weak link. However, to a
first approximation, as we noted above, weak links should be avoided where possible, and
restricted in their effects otherwise, through sound architecture and sound implementation
practice.

2.3.4 Generally Accepted Systems Security Principles (I?F, 1997)

The 1990 report of the National Research Council study group that produced Computers
at Risk [8] included a recommendation that a serious effort be made to develop and pro-
mulgate a set of Generally Accepted Systems Security Principles (GASSP). That led to the
creation of the International Information Security Foundation (I*SF). A draft of its GASSP
document [33] is available on-line. A successor effort is now underway, after a long pause.

The proposed GASSP consists of three layers of abstraction, nine Pervasive Principles (re-
lating to confidentiality, integrity, and availability), a set of 14 Broad Functional Principles,
and a set of Detailed Principles (yet to be developed, because the largely volunteer project
ran out of steam, in what Jim Horning refers to as a last gassp!). The GASSP effort thus
far actually represents a very worthy beginning, and one more approach for those interested
in future efforts. The top two layers of the GASSP principle hierarchy are summarized here
as follows.

Pervasive Principles

e PP-1. Accountability

e PP-2. Awareness

e PP-3. Ethics

e PP-4. Multidisciplinary

e PP-5. Proportionality

e PP-6. Integration

e PP-7. Timeliness

e PP-8. Assessment

e PP-9. Equity

Broad Functional Principles

e BFP-1. Information Security

e BFP-2. Education and Awareness

e BFP-3. Accountability

e BFP-4. Information Management

e BFP-5. Environmental Management

e BFP-6. Personnel Qualifications

e BFP-7. System Integrity

e BFP-8. Information Systems Life Cycle

e BFP-9. Access Control

e BFP-10. Operational Continuity and Contingency Planning

e BFP-11. Information Risk Management

e BFP-12. Network and Infrastructure Security

e BFP-13. Legal, Regulatory, and Contractual Requirements of Info Se-
curity

e BFP-14. Ethical Practices

The GASSP document gives a table showing the relationships between the 14 Broad
Functional Principles and the 9 Pervasive Principles. That table is reproduced here as
Table 2.3.

Table 2.3: GASSP Cross-Impact Matrix

[PP: [PP-1]PP-2| PP-3 [PP-4 | PP-5 | PP-6 | PP-7 | PP-8 | PP-9 |
BFP-1 | X | X | X | X | X | X | X | X | X
BFP2 | X | X | X | X X
BFP3 | X | X | X | X X
BFP-4 | X | X X
BFP5 || X | X | X | X | X X
BFP6 | X | X X X
BFP-7 | X X | X | X [X [X
BFP-8 | X X [X | X [X [X
BFP-9 | X X [X [X [X [X
BFP-10 | X X | X [X X
BFP-11|| X | X X | X | X | X [X
BFP-12 || X X [X X [X
BFP-3| X | X | X | X X
BFP-14 X [X | X X

2.3.5 TCSEC, ITSEC, CTCPEC, and the Common Criteria (1985 to date)

Any enumeration of relevant principles must note the historical evolution of evaluation cri-
teria over the past decades from the 1985 DoD Trusted Computer System Evaluation
Criteria (TCSEC, a.k.a. The Orange Book [21]) and the ensuing Rainbow Books, to the
1990 Canadian Trusted Computer Product Evaluation Criteria (CTCPEC, [6]), and the 1991
Information Technology Security Evaluation Criteria (ITSEC, [13]). These efforts have re-
sulted in an international effort to produce the Common Criteria framework (ISO 15408 [18]),
which represents the current state of the art in that particular evolutionary process. (Ap-
plicability to multilevel security is also addressed within the Common Criteria framework,
although it is much more fundamental to the TCSEC.)

2.3.6 Extreme Programming, 1999

A seemingly radical approach to software development is found in the Extreme Program-
ming (XP) movement [4]. (Its use of “XP” considerably predates Microsoft’s.) Although
XP appears to run counter to most conventional programming practices, it is indeed highly
disciplined. XP might be thought of as very small chief programmer teams somewhat in
the spirit of a Harlan Mills’ Clean-Room approach, although it has no traces of formalism
and is termed a lightweight methodology. It involves considerable emphasis on disciplined
planning (documented user stories, scheduling of relatively frequent small releases, extensive
iteration planning, and quickly fixing XP whenever necessary), designing (with simplicity as
a driving force, the selection of a system metaphor, and continual iteration), coding (paired
programmers working closely together, continual close coordination with the customer, ad-
herence to agreed-upon standards, only one programmer pair may integrate at one time,

frequent integration, deferred optimization, and no overtime pay), and testing (code must
pass unit tests before release, tests must be created for each bug found, acceptance tests
are run often, and the results are published). Questions of how to address architecture in
the large seem not to be adequately addressed within Extreme Programming (although they
are absolutely fundamental to the approach that we are taking in our CHATS project, but
perhaps are considered extraneous to XP). See the Web site noted in [4] for considerable
background on the XP movement, including a remarkably lucid Frequently Asked Questions
document contrasting XP with several other approaches (UML, RUP, CMM, Scrum, and
FDD) — although this is a little like comparing apples and oranges.

2.3.7 Other Approaches to Principled Development

Of course, there are too many other design and development methodologies to enumerate
here, ranging from very simple to quite elaborate. In some sense, it does not matter which
methodology is adopted, as long as it provides some structure and discipline, and is relatively
compatible with the abilities of the particular design and development team. For example,
Dick Karpinski hands out a business card containing his favorite, Tom Gilb’s Project Man-
agement Rules: (1) Manage critical goals by defining direct measures and specific targets;
(2) Assure accuracy and quality with systematic project document inspections; (3) Control
major risks by limiting the size of each testable delivery. These are nice goals, but depend
on the skills and experience of the developers with only subjective evaluation criteria.
Harlan Mills” “Clean-Room” technology has some elements of formalism that are of interest
with respect to increasing assurance, although not specifically oriented toward security. In
general, good development practice is a necessary prerequisite for trustworthy systems, as
are means for evaluating that practice.

2.4 Types of Design and Implementation Flaws, and Their Avoid-
ance

Nothing is as simple as we hope it will be. Jim Horning

Some characteristic sources of security flaws in system design and implementation are
noted in [24], elaborating on earlier formulations and refinements (e.g., [1, 31]). There
are various techniques for avoiding those flaws, including defensively oriented programming
languages, defensively oriented compilers, better run-time environments, and generally better
software engineering practice.

e Identification and authentication. The lack of nonspoofable identities and peer-to-
peer authentication within user systems and network infrastructures is a huge obstacle
to the robust networking of systems and prevents traceback to identify misuse — as-
suming that the misuse can be detected. The pervasive use of fixed/reusable passwords
(especially those that traverse networks unencrypted or are otherwise exposed) is also a
high-risk problem. Elaborate schemes for managing these passwords (such as avoiding
dictionary words) ignore many of the risks. An enormous improvement can be achieved

by using one-time authenticators such as cryptographic tokens, and — in certain con-
strained user environments — biometrics, at least within supposedly trustworthy sub-
systems and subnetworks. The pervasive use of unauthenticated IP addresses that are
easily spoofed is another area of risk. Remote sites and remote users are frequently not
properly identified and authenticated. Meaningful authentication is a precursor to the
avoidance or restriction of many types of misuse.

Authorization. Our systems and networks suffer from a serious lack of context-
sensitive authorization. Monolithic access controls tend to grant all-or-nothing or ex-
tremely coarse permissions. The development and consistent use of finer-grained autho-
rization techniques would be very helpful in enforcing separation of privilege and least
privilege. In the classified world, gross levels (e.g., Top Secret, Secret, Confidential,
and Unclassified) are clearly too inclusive, which is why finer-grained compartments are
invoked.

Initialization and allocation. Failures in the initialization of procedures, processes,
and indeed stable system and network configuration management represent a large class
of system flaws. Consistency checking on entry, determination of suitable availability
of appropriate resources, and deletion of possible residues are examples of techniques
that can provide improved initialization and allocation.

Finalization. In most programming languages, the lack of graceful termination and
complete deallocation is inadequately recognized as a source of flaws. For example,
deletion of leftover residues from previous executions is often ignored or relegated to
an initialization problem, rather than treated systematically on termination (perhaps
on the grounds that it might be avoided altogether in some circumstances). In general,
finalization should be symmetrically matched with initialization. Whatever is done in
initialization may need to be explicitly undone or at least checked for consistent status at
finalization. Programming languages that incorporate garbage collection (GC) attempt
to do this implicitly, although not always perfectly. For example, note that Java's
finalizers based on pointer unreachability are inherently imprecise. Various other GC-
based languages have subtle finalization problems, as do non-GC-based programming
languages. Overall, the need for secure and robust finalization remains a research topic,

Run-time validation. A large class of flaws results from inadequate run-time valida-
tion. Careful attention to techniques such as argument validation and bounds checks
(especially to prevent insertion of Trojan horses such as executables added to argu-
ments, causing buffer overflows), divide-by-zero checks, and strong typing of arguments
can have enormous benefits. Brian Randell long ago suggested the benefits of moving
checking closer to the operations being performed (whether in space, in time, or in layer
of abstraction), to reduce the intervening infrastructure that must be trustworthy. This
is also applicable to end-to-end checks and end-to-end security.

Consistent naming. Aliases, pointers, links, caches, and dynamic changes without
relinking, and other potentially multiple representations all represent common sources of
security vulnerabilities. Symmetric treatment of aliases, symbolic naming and dynamic

linking, use of globally unique names, and recognition of stale caches and cache clearing
are examples of beneficial techniques.

e Encapsulation. Exposure of procedure and process internals may allow leakage of sup-
posedly protected information or externally induced interference. Proper encapsulation
requires a combination of system architecture, programming language design, software
engineering, static checking, and dynamic checking.

e Asynchronous consistency. Many vulnerabilities arise as a result of timing and se-
quencing, such as order dependencies, race conditions, synchronization, and deadlocks.
Note that many of these problems arise because of sharing of state information (par-
ticularly in real time or in sequential ordering) across abstractions that otherwise seem
disjoint. Atomic transactions, multiphase commits, and hierarchical locking strategies
are examples of constructive design techniques.

e Other logic errors. There are also many common logic errors (such as off-by-one
counting, omitted negations, or absolute values) that need to be avoided. Many of these
arise in the design process, but some involve bad implementation. Useful techniques for
detecting some of these errors include defensive programming language design, compiler
checks, and formal methods analyzing consistency of programs with specifications. Of
particular recent interest is the use of static checking. Such an approach may be formally
based, as in the use of model checking by Hao Chen, Dave Wagner, and Drew Dean
(as part of our CHATS project). Alternatively, there are numerous approaches that
do not use formal methods, ranging in sophistication from lint to LCLint (Evans) to
Extended Static Checking (Nelson, Reino, et al., DEC/Compaq/SRC). Jim Horning
notes that even partial specifications increase the power of the latter two, and provide
a relatively gentle way to incorporate additional formalism into development. However,
it is worth noting that strong type checking and model checking tend to expose various
errors that are inconsequential, particularly with respect to security and reliability.
Purify and similar tools are useful in catching memory leaks, array-bound violations,
and related memory problems. Nevertheless, these and other analytic techniques can
be very helpful in improving design soundness and code quality as long as they are
not relied on by themselves as silver bullets.

All of the principles can have some bearing on avoiding these classes of vulnerabilities.

Several of these concepts in combination notably modularity, abstraction, encapsu-
lation, device independence where advantageous, information hiding, complete mediation,
separation of policy and mechanism, separation of privilege, least privilege, and least com-
mon mechanism — are relevant to the notion of virtual interfaces and virtual machines. The
basic notion of virtualization is that it masks many of the underlying details, and makes
it possible to change the implementation without changing the interface. In this respect,
several of these attributes are found in the object-oriented paradigm.

Several examples of virtual mechanisms and virtualized interfaces are worth noting. Vir-
tual memory masks physical memory locations and paging. A virtual machine masks the
representation of process state information and processor multiplexing. Virtualized input-
output masks device multiplexing, device dependence, formatting, and timing. Virtual mul-

tiprocessing masks the scheduling of tasks within a collection of seemingly simultaneous
processes. The Multics operating system [32] provides an illustration of virtual memory and
virtual secondary storage management (with demand paging hidden from the programs),
virtualized input-output (with symbolic stream names and device independence where com-
monalities exist), and virtual multiprogramming (with scheduling typically hidden from the
programming interfaces). The GLU environment [19] is an elegant illustration of virtual mul-
tiprocessing (which allows programs to be distributed among different processing resources
without explicit processor allocation).

2.5 Roles of Assurance and Formalism

In principle, everything should be simple.
In reality, things are typically not so simple.
(Note: The SRI CSL Principal Scientist is also a Principle Scientist. PGN)

In general, the task of providing some meaningful assurance that a system is likely to do
what is expected of it can be enhanced by any techniques that simplify or narrow the analysis
— for example, by increasing the discipline applied to system architecture, software design,
specifications, code style, and configuration management. Most of the cited principles tend
to do exactly that — if they are applied wisely.

Techniques for increasing assurance are considered in greater detail in Chapter 5, including
the potential roles of formal methods.

2.6 Caveats on Applying the Principles

For every complex problem, there is a simple solution. And it’s always wrong.
H.L. Mencken

As we noted above, the principles referred to here may be in conflict with one another
if each is applied independently, and are themselves not simply composable. Consequently,
each principle must be applied in the context of the overall development, and we need to
expend considerable effort to reformulate the principles to make them more readily compos-
able.

There are also various potentially harmful considerations that must be considered for
example, overuse, underuse, or misapplication of these principles, and certain limitations
inherent in the principles themselves. Merely paying lipservice to a principle is clearly a
bad idea; principles must be consistently applied to the extent that they are appropriate
to the given purpose. Similarly, all of the criteria-based methodologies have many systemic
limitations (e.g., [23, 37]); for example, formulaic application of evaluation criteria is always
subject to incompleteness and misinterpretation of requirements, oversimplification in anal-
ysis, and sloppy evaluations. However, when carefully applied, such methodologies can be
useful and add discipline to the development process. Thus, we stress here the importance
of fully understanding the given requirements and of creating an overall architecture that
is appropriate for realizing those requirements, before trying to conduct any assessments of

compliance with principles or criteria. There is absolutely no substitute for human intelli-
gence, experience, and foresight.

The Saltzer Schroeder principle of keeping things simple is one of the most popular and
commonly cited. However, it can be extremely misleading when espoused (as it commonly
is) in reference to systems with critical requirements for security, reliability, survivability,
real-time performance, and high assurance — especially when all of these requirements are
necessary within the same system environment. Simplicity is a very important concept in
principle (in the small), but complexity is often unavoidable in practice (in the large). For
example, serious attempts to achieve fault-tolerant behavior often result in at least doubling
the size of the overall system. As a result, the principle of simplicity should really be one of
managing complexity rather than trying to eliminate it, particularly where complexity is in
fact inherent in the combination of requirements. Keeping it simple is indeed a wonderful
principle, but often difficult in reality. Nevertheless, unnecessary complexity should of course
be avoided. The back-side of the Einstein quote at the beginning of Section 2.1 is indeed both
profound and relevant, yet often overlooked in the overzealous quest for perceived simplicity.

An extremely effective approach to dealing with intrinsic complexity is through a combi-
nation of the principles discussed here, particularly abstraction, modularity, encapsulation,
and careful hierarchical separation that architecturally does not result in serious performance
penalties, well conceived virtualized interfaces that greatly facilitate implementation evolu-
tion without requiring changes to the interfaces or that enable design evolution with minimal
disruption, and nonlocal optimization. In particular, hierarchical abstraction can result in
relative simplicity at the interfaces of each abstraction and each layer, in relative simplicity
of the interconnections, and perhaps even relative simplicity in the implementation of each
module. By keeping the components and their interconnections conceptually simple, it is
possible to achieve conceptual simplicity of the overall system or networks of systems despite
inherent complexity. Furthermore, simplicity can sometimes be achieved through design gen-
erality, recognizing that several seemingly different problems can be solved symmetrically at
the same time, rather than creating different (and perhaps incompatible) solutions. Note
that such solutions might appear to be a violation of the principle of least common mech-
anism, but not when the common mechanism is fundamental — as in the use of a single
uniform naming convention or the use of a uniform addressing mode that transcends different
subtypes of typed objects. In general, it is riskful to have multiple procedures managing the
same data structure for the same purposes. However, it can be very beneficial to separate
reading from writing as in the case of one process that updates and another process that
uses the data. It can also be beneficial to reuse the same code on different data structures,
although strong typing is then important.

One of our primary goals in this project is to make system interfaces simple while masking
complexity so that the complexities of the design process and the implementation itself can
be hidden by the interfaces. This may in fact increase the complexity of the design process,
the architecture, and the implementation. However, the resulting system complexity need
be no greater than that required to satisfy the critical requirements such as for security,
reliability, and survivability. It is essential that tendencies toward bloatware be strongly
resisted. (They seem to arise largely from the desire for bells and whistles extra features

and fancy graphics.)

A networking example of the constructive use of highly principled hierarchical abstrac-
tion is given by the protocol layers of TCP/IP. An operating system example is given by the
capability-based Provably Secure Operating System (PSOS) [14, 29, 30]) in which the func-
tionality at each of more than a dozen layers was specified formally in only a few pages each,
with at least the bottom 6 layers intended to be implemented in hardware. The underlying
addressing is based on a capability mechanism that uniformly encompasses and protects ob-
jects of arbitrary types — including files, directories, processes, and other system- and user-
defined types. The PSOS design is particularly noteworthy because a single capability-based
operation at layer 12 (user processes) could be executed as a single machine instruction at
layer 6 (system processes), with no iterative interpretation required unless there were missing
pages or unlinked files that require operating system intervention (e.g., for dynamic linking
of symbolic names, a la Multics). To many people, hierarchical layering instantly brings to
mind inefficiency. However, the PSOS architecture is an example in which the hierarchical
design could be implemented extremely efficiently ~ because of the architecture.

We note that formalism for its own sake is generally counterproductive. Formal methods
are not likely to reduce the overall cost of software development, but can be helpful in
decreasing the cost of software quality and assurance. They can be very effective in carefully
chosen applications, such as evaluation of requirements, specifications, critical algorithms,
and particularly critical code. Once again, we should be optimizing not just the cost of
writing and debugging code, but rather optimizing more broadly over the life cycle.

There are many other common pitfalls that can result from the unprincipled use of prin-
ciples. Blind acceptance of a set of principles without understanding their implications is
clearly inappropriate. (Blind rejection of principles is also observed occasionally, particu-
larly among people who establish firm requirements with no understanding of whether those
requirements are realistically implementable — and among strong-willed developers with a
serious lack of foresight.)

Lack of discipline is clearly inappropriate in design and development. For example, we
have noted elsewhere [25, 26] that the open-source paradigm by itself is not likely to produce
secure, reliable, survivable systems in the absence of considerable discipline throughout de-
velopment, operation, and maintenance. However, with such discipline, there can be many
benefits. (See also [16] on the many meanings of “open source” and a Newcastle Dependable
Interdisciplinary Research Collaboration (DIRC) final report [15] on dependability issues in
open source, part of ongoing work.)

Any principle can typically be carried too far. For example, excessive abstraction can
result in overmodularization, with enormous overhead resulting from intermodule communi-
cation and nonlocal control flow. On the other hand, conceptual abstraction through mod-
ularization that provides appropriate isolation and separation can sometimes be collapsed
(e.g., for efficiency reasons) in the implementation as long as the essential protection
boundaries are not undermined. Thus, modularity should be considered where it is advan-
tageous, and not otherwise.

Application of each principle is typically somewhat context dependent, and in particu-
lar dependent on the specific architecture. In general, principles should always be applied
relative to the integrity of the architecture.

One of the severest risks in system development involves local optimization with respect to
components or individual functions, rather than global optimization over the entire architec-
ture, its implementation, and its operational characteristics. Radically different conclusions
can be reached depending on whether or not you consider the long-term complexities and
costs introduced by bad design, sloppy implementation, increased maintenance necessitated
by hundreds of patches, incompatibilities between upgrades, noninteroperability among dif-
ferent components with or without upgrades, and general lack of foresight. Furthermore,
unwise optimization (local or global) must not collapse abstraction boundaries that are es-
sential for security or reliability — perhaps in the name of improved performance. As one
example, real-time checks (bounds checks, argument validation, etc.) should be kept close
to the operations involved, for obvious reasons.

Perhaps most insidious is the a priorilack of attention to critical requirements, such as any
that might involve the motherhood attributes noted in [22] and listed above. Particularly
in dealing with security, reliability, and survivability in the face of arbitrary adversities,
there are few if any easy answers. But if those requirements are not dealt with from the
beginning of a development, they can be extremely difficult to retrofit later. One particularly
appealing survivability requirement would be that systems and networks should be able
to reboot, reconfigure, and revalidate their soundness following arbitrary outages, without
human intervention. That requirement has numerous architectural implications that are
considered in Chapter 4.

Once again, everything should be made as simple as possible, but no simpler. Careful
adherence to principles that are deemed effective is likely to help achieve that goal.

2.7 Summary

In theory, there is no difference between theory and practice. In practice, there is
an enormous difference. (Many variants of this concept are attributed to various
people. This is my own adaptation.)

What would be extremely desirable in our quest for trustworthy systems and networks is
theory that is practical and practice that is sufficiently theoretical. We firmly believe that
thoughtful and judiciously applied adherence to sensible principles that are appropriate for
any particular development can greatly enhance the security, reliability, and overall surviv-
ability of the resulting systems and networks. These principles can also contribute greatly to
operational interoperability, maintainability, operational flexibility, long-term evolvability,
higher assurance, and many other desirable characteristics.

To illustrate some of these concepts, we have given a few examples of systems and system
components whose design and implementation are strongly principled. The omission of other
examples does not in any way imply that they are less relevant. We have also given some
examples of just a few of the potential difficulties in trying to apply these principles.

Please remember that the supposedly best practices can be manhandled (or womanhan-
dled) by very good programmers, and that bad programming languages can still be used
wisely. There are no easy answers. However, having sensible system and network architec-
tures is generally a good starting point, as discussed in Chapter 4, where we specifically

consider classes of system and network architectures that are consistent with the principles
noted here, and that are highly likely to be effective in fulfilling the CHATS goals. In par-
ticular, we seek to approach inherently complex problems architecturally, structuring the
solutions to those problems as conceptually simple compositions of relatively simple compo-
nents, with emphasis on the predictable behavior of the resulting systems and networks.

Bibliography

[1] R.P. Abbott et al. Security analysis and enhancements of computer operating systems.

Technical report, National Bureau of Standards, 1974. Order No. S-413558-74.

(2] A. Avizienis and J-C. Laprie. Dependable computing: from concepts to design diversity.

Proceedings of the IEEE, 74(5):629-638, May 1986.

[3] A. Avizienis and J. C. Laprie, editors. Dependable Computing for Critical Applications,

[4]

[5]

[10]

volume 4 of Dependable Computing and Fault-Tolerant Systems, Santa Barbara, CA,
August 1989. Springer-Verlag, Vienna, Austria.

K. Beck. Ezxtreme Programming FExplained: Embrace Change. Addison-Wesley, Reading,
Massachusetts, 1999. (http://www.extremeprogramming.org).

P. Boudra, Jr. Report on rules of system composition: Principles of secure system design.
Technical report, National Security Agency, Information Systems Security Organization,
Office of Infosec Systems Engineering, 19 Technical Report 1-93, Library No. S-240, 330,
March 1993. For Official Use Only.

Canadian Systems Security Centre, Communications Security Establishment, Govern-
ment of Canada. Canadian Trusted Computer Product Evaluation Criteria, December
1990. Final Draft, version 2.0.

A. Chander, D. Dean, and J.C. Mitchell. Deconstructing trust management. In Pro-
ceedings of the 2002 Workshop on Issues in the Theory of Security, Portland, Oregon,
January 2002. IFIP Working Group 1.7.

D.D. Clark et al. Computers at Risk: Safe Computing in the Information Age. National
Research Council, National Academy Press, 2101 Constitution Ave., Washington, D.C.
20418, 5 December 1990. Final report of the System Security Study Committee.

F.J. Corbat6. On building systems that will fail (1990 Turing Award Lecture, with
a following interview by Karen Frenkel). Communications of the ACM, 34(9):72-90,
September 1991.

F.J. Corbato, J. Saltzer, and C.T. Clingen. Multics: The first seven years. In Proceedings
of the Spring Joint Computer Conference, volume 40, Montvale, New Jersey, 1972.
AFIPS Press.

31

[11]

[12]

[13]

[18]

[19]

[20]

[21]

22]

M. Curtin. Developing Trust: Online Security and Privacy. Apress, Berkeley, California,
and Springer-Verlag, Berlin, 2002.

D.E. Denning, P.G. Neumann, and Donn B. Parker. Social aspects of computer security.
In Proceedings of the 10th National Computer Security Conference, September 1987.

European Communities Commission. Information Technology Security Evaluation Cri-
teria (ITSEC), Provisional Harmonised Criteria (of France, Germany, the Netherlands,
and the United Kingdom), June 1991. Version 1.2. Available from the Office for Offi-
cial Publications of the European Communities, 1.-2985 Luxembourg, item CD-71-91-
502-EN-C. Also available from UK CLEF, CESG Room 2/0805, Fiddlers Green Lane,
Cheltenham UK GLOS GL52 5AJ, or GSA/GISA, Am Nippenkreuz 19, D 5300 Bonn

2, Germany.

R.J. Feiertag and P.G. Neumann. The foundations of a Provably Secure Operating
System (PSOS). In Proceedings of the National Computer Conference, pages 329-334.
AFIPS Press, 1979. http://www.csl.sri.com/neumann/psos.pdf.

C. Gacek and C. Jones. Dependability issues in open source software. Technical report,
Department of Computing Science, Dependable Interdisciplinary Research Collabora-
tion, University of Newcastle upon Tyne, Newcastle, England, 2001. Final report for
PA5, part of ongoing related work.

C. Gacek, T. Lawrie, and B. Arief. The many meanings of open source. Technical re-
port, Department of Computing Science, University of Newcastle upon Tyne, Newcastle,
England, August 2001. Technical Report CS-TR-737.

C. Gunter, S. Weeks, and A. Wright. Models and languages for digital rights. In
Proceedings of the 2001 Hawaii Intenational Conference on Systems Science, Honolulu,
Hawaii, March 2001. (http://www.star-lab.com/tr/star-tr-01-04.html).

International Standards Organization. The Common Criteria for Information Technol-

ogy Security Fvaluation, Version 2.1, ISO 15408. ISO/NIST/CCIB, 19 September 2000.
(http://csre.nist.gov/cc).

R. Jagannathan and C. Dodd. GLU programmer’s guide v0.9. Technical report, Com-
puter Science Laboratory, SRI International, Menlo Park, California, November 1994.
CSL Technical Report CSL-94-06.

J.C. Laprie, editor. Dependability: A Unifying Concept for Reliable Computing and
Fault Tolerance. Springer-Verlag, 1990.

NCSC. Department of Defense Trusted Computer System Evaluation Criteria (TCSEC).
National Computer Security Center, December 1985. DOD-5200.28-STD, Orange Book.

P.G. Neumann. The role of motherhood in the pop art of system programming. In
Proceedings of the ACM Second Symposium on Operating Systems Principles, Princeton,
New Jersey, pages 13 18. ACM, October 1969.

[23] P.G. Neumann. Rainbows and arrows: How the security criteria address computer
misuse. In Proceedings of the Thirteenth National Computer Security Conference, pages
414 422, Washington, D.C., 1 4 October 1990. NIST/NCSC.

[24] P.G. Neumann. Computer-Related Risks. ACM Press, New York, and Addison-Wesley,
Reading, Massachusetts, 1995.

[25] P.G. Neumann. Practical architectures for survivable systems and networks. Techni-
cal report, Final Report, Phase Two, Project 1688, SRI International, Menlo Park,
California, June 2000. (http://www.csl.sri.com/neumann/survivability.html).

[26] P.G. Neumann. Robust nonproprietary software. In Proceedings of the 2000
Symposium on Security and Privacy, pages 122-123, Oakland, California, May
2000. IEEE Computer Society. (http://www.csl.sri.com/neumann/ieee00.ps and
http://www.csl.sri.com /neumann/ieee00.pdf).

[27] P.G. Neumann. Achieving principled assuredly trustworthy composable systems and
networks. In Proceedings of the DARPA Information Survivability Conference and Ex-
hibition, DISCEXS3, volume 2, pages 182 187. DARPA and IEEE Computer Society,
April 2003.

[28] P.G. Neumann. [llustrative risks to the public in the use of computer systems and related
technology, index to RISKS cases. Technical report, Computer Science Laboratory, SRI
International, Menlo Park, California, 2003. The most recent version is available online
in html form for browsing at http://www.csl.sri.com/neumann /illustrative.html), and
also in .ps and .pdf form for printing in a much denser format.

[29] P.G. Neumann, R.S. Boyer, R.J. Feiertag, K.N. Levitt, and L. Robinson. A Provably
Secure Operating System: The system, its applications, and proofs. Technical report,
Computer Science Laboratory, SRI International, Menlo Park, California, May 1980.
2nd edition, Report CSL-116.

[30] P.G. Neumann and R.J. Feiertag. PSOS revisited. In Proceedings of the 19th An-
nual Computer Security Applications Conference (ACSAC 2003), Classic Papers sec-
tion, pages 208 216, Las Vegas, Nevada, December 2003. IEEE Computer Society.
http://www.acsac.org/ .

[31] P.G. Neumann and D.B. Parker. A summary of computer misuse techniques. In Proceed-
ings of the Twelfth National Computer Security Conference, pages 396 407, Baltimore,
Maryland, 10 13 October 1989. NIST/NCSC.

[32] E.I. Organick. The Multics System: An Examination of Its Structure. MIT Press,
Cambridge, Massachusetts, 1972.

[33] W. Ogzier. GASSP: Generally Accepted Systems Security Principles. Tech-
nical report, International Information Security Foundation, June 1997.
web.mit.edu/security /www /gassp1.html.

[34] B. Randell, J.-C. Laprie, H. Kopetz, and B. Littlewood, editors. Predictably Dependable
Computing Systems. Basic Research Series. Springer-Verlag, Berlin, 1995.

[35] J.H. Saltzer and M.D. Schroeder. The protection of information in com-
puter systems. Proceedings of the IEEE, 63(9):1278 1308, September 1975.
(http://www.multicians.org).

[36] M.D. Schroeder. Cooperation of mutually suspicious subsystems in a computer utility.
Technical report, Ph.D. Thesis, M.I.T., Cambridge, Massachusetts, September 1972.

[37] W.H. Ware. A retrospective of the criteria movement. In Proceedings of the Eigh-
teenth National Information Systems Security Conference, pages 582 588, Baltimore,
Maryland, 10-13 October 1995. NIST/NCSC.

[38] S. Weeks. Understanding trust management systems. In Proceedings of the 2001 Sympo-
stum on Security and Privacy, Oakland, California, May 2001. IEEE Computer Society.
(http://www.star-lab.com/tr/star-tr-01-02.html).

=N

Software Engineering
Correctness by Construction

Issue: 1.1
Status: Provisional
13th January 2004

Originator

Anthony Hall, Rod Chapman
Approver

Martin Croxford

Copies to:

SEl Praxis Critical Systems
Noopur Davies Dewi Daniels

=/

Software Engineering
Correctness by Construction

Issue: 1.1

Page 2 of 25

=

Software Engineering
m Correctness by Construction Issue: 1.1
Management Summary

Correctness by Construction is a radical, effective and economical method of building software with high
integrity for security-critical and safety-critical applications. Praxis Critical Systems use it to produce
software with extremely low defect rates - fewer than 0.1 defects per thousand lines of code - with
good productivity - up to around 30 lines of code per day.

The principles of Correctness by Construction are:

1 Don’tintroduce errors in the first place.

2 Remove any errors as close as possible to the point that they are introduced.

These are achieved by

1 Using a sound, formal, notation for all deliverables. For example, we use Z for writing software
specifications, so it is impossible to be ambiguous. We code in SPARK, so it is impossible to
introduce errors such as buffer overflow.

2 Using strong, tool-supported methods to validate each deliverable. For example we carry out proofs
of formal specifications and static analysis of code. This is only possible because we use formal
notations.

3 Carrying out small steps and validating the deliverable from each step. For example, we develop a
software specification as an elaboration of the user requirements, and check that it is correct
before writing code. We build the system in small increments, and check that each increment
behaves correctly.

4 Saying things only once. For example, we produce a software specification, which says what the
software will do, and a design, which says how it will be structured. The design does not repeat any

information in the specification, and the two can be produced in parallel.

5 Designing software that’s easy to validate. We write simple code that directly reflects the
specification, and test it using tests derived systematically from that specification.

6 Doing the hard things first. For example we produce early prototypes to test out difficult design
issues or key user interfaces.

As a result, Correctness by Construction is both effective and economical:

1 Defects are removed early in the process when changes are cheap. Testing becomes a
confirmation that the software works, rather than the point at which it must be debugged.

2 Evidence needed for certification is produced naturally as a by-product of the process.

3 Early iterations produce software that carries out useful functions and builds confidence in the
project.

Page 3 of 25

=/

Software Engineering
Correctness by Construction

Contents

Management Summary

1 Introduction

2 Overview of the Process
2.1 Process Outline

2.2 Process Characteristics

3 Process Steps

3.1 Requirements

3.2 Specification

3.3 High Level Design

3.4 Detailed Design

3.5 Test Specifications

3.6 Module Specifications

3.7 Code

3.8 Building

3.9 Commissioning

4 Generic Activities

4.1 Process Planning

4.2 Staff Competence and Training
4.3 Tracing

4.4 Fault management

4.5 Change management

4.6 Configuration management
4.7 Team organisation

4.8 Metrics collection

5 Examples of Process Use
5.1 CDIS

5.2 SHOLIS

5.3 The MULTOS CA

5.4 Project A

5.5 ProjectB

5.6 Metrics

A SPARK

Document Control and References
Changes history

Changes forecast

Document references

Issue: 1.1

o0 o O

11
11
11
12
13
14
15
15
15
16

17
17
17
17
17
17
18
18
18

19
19
19
19
20
20
20

22
24
24

24
24

Page 4 of 25

=

Software Engineering
m Correctness by Construction Issue: 1.1

Introduction

This document describes Correctness by Construction, the Praxis Critical Systems process for
developing high integrity software. This is a flexible process which we have used to develop security-
critical and safety-critical software. It delivers software with very low defect rates, by rigorously
eliminating defects at the earliest possible stage of the process. It is an economical process because
the time spent on early deliverables is more than recouped in the very small amount of rework
necessary at late stages of the project.

The process consists of a number of steps each producing a deliverable, supported by a number of
generic activities such as configuration management. The process is flexible in that the techniques used
for each step can vary according to the project, and the timing and extent of steps can be changed
according to the needs of the application. However, all variants of the process are based on the strong
principle that each step should serve a clear purpose and be carried out using the most rigorous
techniques available that match the particular problem. In particular we almost always use formal
methods to specify behavioural, security and safety properties of the software, since only by using
formality can we achieve the necessary precision.

Section 2 is an overview of the process and describes its main characteristics. Section 3 gives more
detail of the process steps. Section 4 describes generic activities that take place throughout the
process. Section 5 gives examples of process use. Appendix A describes SPARK, a language designed
for secure and safe systems development.

Page 5 of 25

=/

Software Engineering
m Correctness by Construction Issue: 1.1

2.1

/

Overview of the Process

Process Outline

Figure 1 is a simplified diagram of the process. It uses the symbols shown in Figure 2. It shows the main
activities and deliverables, and the general flow of time from top to bottom. It does not show some
crucial aspects of the process:

1 There is more overlap between different activities than can be shown in a figure.

2 The figure omits the outputs of the validation steps. Any validation step can affect any previous
deliverable and cause re-entry to any previous activity.

3 We build the system top down and incrementally.

Correctness by construction depends on knowing what the system needs to do and being sure that it
does it. The first step, therefore, is to develop a clear statement of requirements. However, it is
impossible to develop code reliably from requirements: the semantic gap is just too big. We therefore
use a sequence of intermediate descriptions of the system to progress in tractable, verifiable steps from
the user-oriented requirements to the system-oriented code. At each step we typically have several
different descriptions of different aspects of the system. We ensure that these descriptions are
consistent with each other and we ensure that they are correct with respect to the earlier descriptions.

1 The User Requirements describe the purpose of the software, the functions it must provide and
the non-functional requirements such as security, safety and performance.

2 The Software Specification is a complete and precise description of the behaviour of the software
viewed as a black box. It contains no information about the software’s internal structure.

3 The High Level Design describes the architecture of the software.

4 A number of Detailed Designs describe the operation of different aspects of the software, such as
its process structure or database schema.

5 Module Specifications define the state and behaviour encapsulated by each software module.

6 Code is the executable code of each module.

7 Each Build is a version of the software which offers a subset of its behaviour. Typically early builds
contain only infrastructure software and little application functionality. Each build acts as a test
harness for subsequent code.

8 The Installed Software is the final build, configured and installed in its operational environment.

Section 3 describes each of these deliverables in more detail.

Page 6 of 25

) Software Engineering
m Correctness by Construction

Establish
Requirements

User
Requirements

Specify Design Software
Software Structure

Software A g
Validate Specification Specification High Level Design

ate High Level
Design

Design Software
Components

Validate Detailed " .
m Detailed Designs

Specify Modules

Validate Module Module

Specifications Specifications

Code Modules

Validate Code

Integrate Code

Software Build

Commission

Figure 1 Core Process

Test Build -

Installed
Software

Derive Software
Tests

Test
Specification

Test Installed
Software

This diagram is simplified by omitting most of the parallelism and iteration.

Issue: 1.1

Page 7 of 25

Software Engineering
m Correctness by Construction Issue: 1.1

>
Input or output of creation activity

>
Input to validation activity

Figure 2 Key to Process Diagram

2.2 Process Characteristics

2.2.1 Risk Driven

We choose the set of activities and the order we do activities to minimise the risk of late problems. We
therefore do the most risky activities first. If, for example, we are uncertain about the feasibility of
meeting some requirement, we will do design trailblazing to establish a feasible design ahead of
completing the requirements or specification. We also choose how much specification and design to do
on the basis of risk: if an area is straightforward, we may go straight from requirements to code, while in
a difficult area we will write very detailed and formal specifications.

2.2.2 Confidence building

The Correctness by Construction process provides evidence, throughout the process, about the
correctness of the software being built. This evidence builds confidence that there will be no late-
breaking serious faults. It also supports evaluation and certification of security-critical software, for

Page 8 of 25

=/

/

Software Engineering
m Correctness by Construction Issue: 1.1

2.2.3

2.2.4

2.2.5

2.2.6

example against the Common Criteria, and of safety-critical software, for example against DEF STAN 00-
55.

Parallel

Although the figure appears to describe a largely sequential process, we actually use a lot of parallelism
to reduce timescales. There are three ways we can achieve this:

1 Where two different kinds of activity are independent, we do them in parallel. For example, the high
level design is based largely on non-functional requirements and does not depend on details of the
functional specification, so it can be done in parallel with the software specification.

2 Where the system can be partitioned into different areas, these can be developed in parallel. They
may be at different stages of development at the same time, or progress through the same stages
at the same time.

3 Incremental builds allow us to carry out testing of one build in parallel with coding of the
subsequent build.

Iterative

Whenever we find a fault, we iterate back to the point at which the fault was introduced and rework all
subsequent deliverables. (Obviously we do this in batches, not for each individual fault.) This ensures
that all deliverables are kept consistent at all baselines.

Rigorous

At each stage, we use descriptions that are as formal as possible. This has two benefits. First, formal
descriptions are more precise than informal ones, and therefore they force us to understand issues and
questions before we actually produce the code. Second, there are more powerful verification methods
for formal descriptions than there are for informal ones, so we have more confidence in the correctness
of each step. In particular, formal methods allow some degree of automated checking of the
deliverables and of the relationships between them.

Early validation

The aim of correctness by construction is to prevent faults and to eliminate as early as possible any
faults that are introduced. Therefore each deliverable is validated as rigorously as possible. Wherever
possible we use formal notations and automated tools to validate specifications and designs before any
faults get through to code.

Page 9 of 25

=/

/

Software Engineering
m Correctness by Construction Issue: 1.1

2.2.7

2.2.8

2.2.9

2.2.10

Efficient

There are two reasons why Correctness by Construction is an efficient process. The first is that it
minimises late rework. Because faults are detected and removed as early as possible, few faults survive
to the late stages of the project. The second is that it minimises duplication and repetition of work. The
deliverables all describe different aspects of the software and there is little overlap between them. This
contrasts with methods where each deliverable is essentially an expansion of the previous one.

Measured

We keep metrics on size, productivity and defect rates across the process.

Improved through root cause analysis

We do root cause analysis of significant faults and continuously improve the process.

Flexible

Correctness by construction is not a single, rigid process. Rather it is a framework and set of principles.
For any particular project we tailor it based on the nature and criticality of the project. Projects may
differ in many aspects:

1 Level of rigour
Some projects require fully formal proofs of correspondence between formal specifications; others
may not justify any formality at all.

2 Techniques/notations at each stage
Different kinds of software require different notations. For example embedded systems need a very
different style of specification from database applications.

3 Subsets of activities
Some projects may omit some of the activities, or add extra activities.

4 Content of design
The amount of detail in the design will depend on the size and complexity of the system.

5 Formality of evaluation
The amount of evidence that is collected and the rigour with which the evidence is controlled can
be adapted according to how rigorously the software is to be evaluated. The process is capable of
developing to software to the highest levels of safety (for example safety integrity level 4 as defined
by UK MoD DEF STAN 00-56) and security (for example Common Criteria assurance level EAL 7).

Page 10 of 25

=/

Software Engineering
m Correctness by Construction Issue: 1.1

3.1

3.2

/

Process Steps

This section describes the production and validation of each of the process deliverables.

Requirements

The User Requirements define:

1 The overall objectives of the system.

2 The system context: the people and other systems that interact with it.
3 Relevant facts about the application domain.

4 Functions to be provided by the system and scenarios showing how they achieve the overall
objectives.

5 Non-functional characteristics such as capacity, throughput, reliability, safety and security.

We establish and describe the requirements using Praxis’ REVEAL® method. They may be captured in a
document or in a requirements tool such as DOORS or Requisite Pro.

We pay particular attention to the changeability of requirements. We identify those requirements and
assumptions that are relatively stable, and those that are more likely to change. This allows us to design
the system to cope with the likely changes that will occur during its development and use.

The requirements for secure systems include the security target. This will be stated in English language.
For high levels of assurance, we also write a Formal Security Policy Model. This formalises the technical
aspects of the security target. This has two benefits:

1 It makes the security target absolutely precise.

2 It allows more rigorous validation of subsequent deliverables.

The user requirements are validated by review. The review includes the users of the system and also
developers and testers, who ensure that the requirements are feasible and testable.

Specification

The specification is a complete black-box description of the behaviour of the software. It describes
several aspects:

1 Functionality

We specify the functionality by writing an abstract description of the system state and a description
of the effect of each operation in terms of inputs, outputs and state changes. We always give a

Page 11 of 25

=/

3.3

/

Software Engineering
m Correctness by Construction Issue: 1.1

complete description including both normal and error outcomes. We write this description in a
formal notation such as Z [4], although we also use notations such as UML class diagrams to
describe the system state and, in some cases, state diagrams to describe behaviour.

Concurrency

Some systems have a high degree of concurrency visible to the users and there may be rules about
what concurrent behaviours are allowed. If so we describe these rules, using a formal language
such as CSP [5].

User Interface
We describe in detail the required look and feel of the user interface.

System Interfaces
We produce an interface control document defining the interface with each connected system.

We validate the software specification by:

1

Review

This is a manual check that the specification is

a self consistent (both within each part, and that the abstract specifications are consistent with
the user and system interfaces);

correct with respect to the user requirements;

complete;

d implementable.

o T

Prototyping
We build a prototype of the user interface and evaluate it with suitable user representatives. We
may also build prototypes of critical functionality to validate the abstract specification.

Formal Analysis

When we have a formal specification we can carry out proofs to show that it is self consistent and
has some completeness properties. In critical secure applications we can also prove
correspondence between the specification and the formal security policy model.

High Level Design

The high level design is a top level description of the system’s internal structure and an explanation of
how the components worked together. There are several different descriptions, looking at the structure
from different points of view. In a secure system the descriptions typically include:

1

2

3

distribution of functionality over machines and processes;
database structure and protection mechanisms;

mechanisms for transactions and communications.

Page 12 of 25

=/

/

Software Engineering
m Correctness by Construction Issue: 1.1

3.4

3.4.1

We use different notations for the different aspects of the design. Not all aspects have formal notations.
Where possible we do use formal notations: in particular we use CSP to define any complex process
structure.

The high level design is primarily derived from the non-functional requirements and can be developed in
parallel with the software specification.

We validate the high level design by:
1 Review, to ensure that it
a s self consistent;
b satisfies the requirements;
¢ isimplementable.
2 Automated analysis

If we have a formal design in CSP we use automated tools such as model checkers to validate that
the design has desired properties such as freedom from deadlock.

Detailed Design

The detailed design serves two purposes
1 defining the set of software modules and processes and allocating the functionality across them;

2 providing more detail of particular modules wherever that is necessary.

Module Structure

The module structure describes the software architecture and how functionality described in the
specification and high-level design is allocated to each module. We recognize that the structure of the
implementation may differ from that of the specification, for example where an atomic transaction in the
specification is distributed over many processes or machines in the implementation.

We use an information-flow centric design approach, called INFORMED, to drive and evaluate the
module structure. We developed INFORMED within Praxis Critical Systems to support the design of high
integrity software. It leads to a software architecture that exhibits low coupling and high cohesion. This,
in turn, benefits the later maintainability of the system in the face of subsequent changes. For secure
systems, we categorize system state and operations according to their impact on security. We aim for
an architecture that minimizes and isolates security-critical functions, so reducing the cost and effort of
the (possibly more rigorous) verification of those units. We use a similar approach for safety-critical
software.

Page 13 of 25

=/

/

Software Engineering
m Correctness by Construction Issue: 1.1

3.4.2

3.5

For embedded and real-time systems, we also consider throughput, timing and scheduling issues at this
stage. Systems with particularly stringent hard real-time requirements, for example, might constrain the
style of implementation architecture that can be employed.

Low-level details

We deliberately do not write a detailed design of every aspect of the system. Often the software
specification and module structure together give enough information to create software directly. We do
not duplicate information that is already in the specification or HLD. However we may provide more
detailed designs for, for example:

1 database table structures;

2 complex areas of functionality: these arise where there is a big difference between the
implementation structure and the conceptual structure in the software specification, or where the
software specification has omitted details of some complex processing;

3 user interface code;

4 low-level device handling;

5 rules for mapping specification or design constructs into code: for example, rules for translating
CSP into Ada tasking constructs or Z types into implementation structures.

The detailed designs use different notations for different aspects. We use formal specifications of low-
level modules to clarify complex functionality.

The detailed design is validated by

1 review, to ensure that it is self consistent, efficient and satisfies the specification and the high level
design;

2 formal analysis
A formal low-level specification can be proved correct with respect to a higher level specification.

Test Specifications

We derive test specifications primarily from the software specification, together with the requirements
and the high-level design. We use boundary value analysis to generate tests which cover the
specification. We then supplement these with tests for behaviour which is introduced by the design but
is not visible in the specification. In addition we generate tests for non-functional requirements directly
from the requirements document.

Page 14 of 25

=/

Software Engineering
m Correctness by Construction Issue: 1.1

3.6

3.7

3.8

/

Module Specifications

For each module identified in the module structure, we may construct a more detailed specification for
its implementation. We may code directly from the system specification if that specification is already
suitably detailed and the “gap” between the specification and code is sufficiently narrow.

The module specification serves as a contract between the system specification or a detailed design
and the code itself. We favour languages that have a well-defined semantics and directly support
design-by-contract. Depending on the application domain, the module specification may be expressed in
a model-based notation (such as UML class specifications), an executable specification (such as
Statecharts or control-law specifications), or a design-by-contract programming language (such as Eiffel
or SPARK).

We validate the module specifications by review, using tools as far as possible, to check for internal
consistency, validity with respect to the system specification and so on.

Code

For coding, we use languages and tools that are most appropriate for the task at hand. Validation
requirements play a large role in this choice—languages must be amenable to verification and analysis
so that the required evidence of fithess-for-purpose can be generated effectively. We also recognize that
no one language is most suitable for all modules—in a secure system, for example, we might use
different languages for the security kernel, the system's infrastructure, and the user-interface.

Code is derived from the system specification, module specifications, and low-level designs. We use
automatic code generation where domain-specific tools (such as GUI-builders or control system design
packages) are mature.

We validate code using both static and dynamic techniques. We use static verification tools are far as
possible, since these prevent and detect defects earlier in the life-cycle than testing would allow. Such
tools range from simple style and subset-checking up to fully formal program verification systems. We
always perform manual code-review, although this is only ever performed after application of static
analysis, and we tune the review process to account for the classes of defect that the tools can
eliminate.

Building

We build the system top down and incrementally, with a formal build every few weeks. The first build
consists of the system framework, such as the top-level processes on each machine and the
connections to the external devices. It does not, typically, contain much application functionality. Each
build acts as a test harness for later code.

Page 15 of 25

=

Software Engineering
m Correctness by Construction Issue: 1.1

We test each build by running a subset of the system tests. We use automated regression testing to
ensure that all previous tests are still passed. We measure code coverage as we carry out the tests.
When we find gaps in coverage, we do one of 3 things:

1 Usually the gap is caused by code which is there to implement some aspect of the design not
visible at the specification level. In that case we add suitable tests.

2 Sometimes the gap reflects code which is not in fact necessary, and the code is removed.

3 Sometimes the code cannot be reached by normal operation of the system, but is still necessary -

for example defensive code. In that case, and only then, we write unit tests at the module level.

Apart from this last case, we do no formal unit testing. Unit testing is costly and ineffective at finding
errors in comparison with proof and static analysis [3].

3.9 Commissioning

The commissioning process largely depends on the criticality of the system being delivered and its
operational environment. At the least, we use a documented process for the labelling and delivery of

software builds to the customer. A build is accompanied by a "release certificate" that summarizes the
status and composition of that particular build. For some applications, we also issue a safety certificate

and a warranty.

We supply a Commissioning Guide to the customer, which details the installation of the software onto

the target environment. This may also contain details of how the system's hardware is constructed, and

an inventory of the required components.

For secure systems, we go further. Software may be delivered in tamper-evident bags, for example,
according to the customer's (and regulator's) requirements. Such systems may be commissioned in a

physically secure environment, and commissioning may be witnessed by us, the customer, independent

auditors, evaluators, regulators and so on.

Page 16 of 25

=/

Software Engineering
m Correctness by Construction Issue: 1.1

4.1

4.2

4.3

4.4

4.5

/

Generic Activities

Process Planning

We write a technical plan for each project. This describes what parts of the process we will use, what
techniques we will use at each stage and what validation activities we will carry out. Thus the process is
tailored for each particular application.

Staff Competence and Training

We ensure that all staff working on a project are competent in the relevant areas. We use in-house or
bought-in training to maintain our skill levels.

Tracing

We maintain tracing information showing how each description is related to its successor and
predecessor. For example we record how each requirement is satisfied in the specification. We use
automated tools to check that all requirements are completely traced through to code, and that all code
is ultimately traceable back to the requirements.

Fault management

Fault management is a key part of Correctness by Construction, since the whole aim is to remove faults
as early as possible. Each deliverable is subject to fault management as soon as it has been baselined.
Faults are identified by the validation activities and also by use of deliverables in subsequent stages -
for example, a coder may find a fault in the specification.

When a fault is identified, we do two things:

1 Identify and fix all the deliverables affected by the fault. These may include deliverables earlier than
that in which the fault was first identified, as well as deliverables derived from it.

2 Do root cause analysis to determine why the fault was introduced, and if possible change the
process to avoid faults of this sort appearing in future.

Change management

The key to change management is impact analysis. We find that the rigorous specification and design

information makes impact analysis highly effective. For each change we are able to give a detailed
assessment of the effect on each deliverable.

Page 17 of 25

=

Software Engineering
m Correctness by Construction Issue: 1.1

Change management is also helped by design for change, starting with the changeability requirements
described in section 3.1.

4.6 Configuration management

All deliverables including documents as well as code are under formal tool-supported configuration
management. This enables us to identify versions of individual items and baseline configurations of
consistent sets of documents and code.

4.7 Team organisation

For critical projects we do all formal testing using a team independent of the implementers.

4.8 Metrics collection

We collect metrics on effort, sizes of deliverables, numbers of faults and for each fault its point of
introduction and point of detection.

Page 18 of 25

=/

Software Engineering
m Correctness by Construction Issue: 1.1

5.1

5.2

5.3

/

Examples of Process Use

This section presents metrics for five projects that have used instances of the Correctness-by-
Construction approach. These projects differ in size, application domain and complexity, although all are
classed as “high integrity”—three of the projects have critical safety-relation functions, while the other
two have significant security requirements.

The following paragraphs give a brief description of each project. The projects are identified by name
where, given clients’ confidentiality, we are able to do so at the time of writing.

CDIS

CDIS is a real-time air traffic information system. It has stringent performance and availability
requirements and has proved very reliable in over 11 years of use at the London Terminal Control
Centre. The methods used in developing CDIS have been described in an article [9] and there has been
an independent assessment of the project [10].

SHOLIS

The Ship/Helicopter Operating Limits Information System aids the safe operating of helicopter
operations on naval vessels. It is essentially an information system, giving advice on the safety of
helicopter operations given a particular operating scenario and environmental conditions such as the
incident wind vector and the roll and pitch of the ship. The system’s primary safety function is to raise
audible and visible alarms when environmental conditions step outside of pre-defined operating limits.

SHOLIS was the first project to carry out a full SIL 4 development under the UK MoD’s Def Stan 00-55.
Further information on SHOLIS can be found in [3].

The MULTOS CA

The MULTOS CA is the “root” certification authority for the MULTOS smartcard system. The CA produces
digital certificates that are used in the manufacturing of MULTOS smartcards, and also certificates that
allow trusted applications to be loaded onto a card in the field. The system has demanding throughput
and availability requirements, and so is both distributed and fault-tolerant.

The CA was developed as far as was practicable in line with the UK ITSEC scheme at evaluation level

E6—roughly equivalent to Common Criteria EAL7. Further information on the development of the CA can
be found in [1].

Page 19 of 25

=/

Software Engineering
m Correctness by Construction Issue: 1.1

5.4

5.5

5.6

/

Project A

This project is a military stores management system. It enforces a small number of safety functions, and
was developed in line with the UK’s Def Stan 00-55[8] standard at SIL 3. This project is embedded, and
combines a simple user-interface with complex hard real-time requirements.

Project B

This project is the core of a biometric access-control system. It has been developed using Correctness-
by-Construction to meet or exceed the requirements of the Common Criteria at evaluation/assurance
level EALS.

Metrics

Table 1 presents key metrics for each of the above projects. The first column identifies each project.
The second identifies the year in which the system was first commissioned—the projects are presented
in chronological order. Column three shows the size of the delivered system in physical lines of code.
This is always executable lines and declarations, but does not include comments, blanks lines, or
“annotations” used for design-by-contract. The fourth column presents productivity—this is the lines of
code divided by the total project effort for all project phases from project start up to the completion of
commissioning. The final column reports defect rate in defects per thousand lines of code.

Project Year Size (loc) Productivity (loc | Defects (per kloc)
per day)

CDIS 1992 197,000 12.7 0.75

SHOLIS 1997 27,000 7.0 0.22 (note 1)
MULTOS CA | 1999 100,000 28.0 0.04 (note 2)

A 2001 39,000 11 0.05 (note 3)

B 2003 10,000 38.0 not yet known

(note 4)

Table 1: Correctness-by-Construction project metrics
Notes:

1. 0 defects during acceptance test and sea-trial. 6 defects subsequently discovered and corrected in
first 3 years of in-service use.

Page 20 of 25

Software Engineering
m Correctness by Construction Issue: 1.1

2. 4 defects reported and corrected during 1-year warranty period following commissioning.

3. 2 defects in 2 years following delivery. However, the system is not yet rolled out for operational
service.

4. This project has been undergoing independent evaluation for some months. No defects have been
detected so far but the final results will not be available until February 2004.

Page 21 of 25

=

Software Engineering
m Correctness by Construction Issue: 1.1

SPARK

The SPADE Ada Kernel (SPARK) is a language designed for the construction of high-integrity systems.
The executable part of the language is a subset of Ada95, but the language requires additional
annotations that make it possible to carry out data and information flow analysis[6], and to prove
properties of code, such as partial correctness and freedom from exceptions.

The design goals of SPARK are as follows:
Logical soundness: there should be no ambiguities in the language;

Simplicity of formal description: it should be possible to describe the whole language in a relatively
simple way;

Expressive power: the language should be rich enough to construct real systems;

Security: it should be possible to determine statically whether a program conforms to the language
rules;

Verifiability: formal verification should be theoretically possible and tractable for industrial-sized
systems.

The annotations in SPARK appear as comments (and so are ignored by a compiler), but are processed
by the Examiner tool. These largely concern strengthening the “contract” between the specification and
the body of a unit (for instance specifying the information flow between referenced and updated
variables.) The presence of the annotations also enables the language rules to be checked efficiently,
which is crucial if the language is to be used in large, real-world applications.

SPARK actually has its roots in the security community. Research in the 1970’s[7] into information flow
in programs resulted in SPADE Pascal and, eventually, SPARK. SPARK is widely used in safety-critical
systems, but we believe it is also well-suited to the development of secure systems. SPARK offers static
protection from several of the most common implementation flaws that plague secure systems:

o Buffer overflows. Proof of the absence of predefined exceptions (for such things as buffer
overflows) offer strong static protection from a large class of security flaw. Such things are an
anathema to the safety-critical community, yet remain a common form of attack against networked
computer systems. The process of attempting such proofs also yields interesting results: a proof
which doesn’t “come out” easily often is indicative of a bug, and the proof forces an engineer to
read, think about, and understand their programs in depth, which can only be a good thing.

e Run-Time Library Defects. SPARK can be compiled with no supporting run-time library, implying
that an application can be delivered with no COTS component. At the highest assurance levels, this

may be of significant benefit, where evaluation of such components remains problematic.

e Timing and memory attacks. SPARK is amenable to the static analysis of timing and memory
usage. This problem is known to the real-time community, where analysis of worst-case execution

Page 22 of 25

=

Software Engineering
m Correctness by Construction Issue: 1.1

time is often required. In the development of secure systems, it may be possible to use such
technology to ensure that programs exhibit as little variation in timing behaviour as possible, as a
route to protect against timing analysis attacks.

¢ Input Data Validation. The SPARK verification system is conservative, and does not trust data
coming from the external environment. Formally speaking, the verification condition generator does
not automatically add hypotheses regarding input data, so that subsequent proofs (e.g. for a range
check where such an input is used) cannot be discharged until the validity of that input has been
explicitly checked. In short, SPARK forces the programmer to validate input data (or at least
provides a very strong reminder to do so!)

Additionally, SPARK provides additional forms of verification, such as:

e Program-wide, complete data- and information-flow analysis. These analyses make it impossible for
a SPARK program to contain a dataflow error (e.g. the use of an uninitialized variable)—a common
implementation error that can be the cause of subtle (and possibly covert) security flaws.

e Proof of correctness of SPARK programs is achievable, and so allows a program to be shown to
correspond with some suitable formal specification. This allows for formality in the design and
specification of a system to be extended through its implementation and can meet the

requirements of the CC scheme at the highest evaluation levels.

More information about SPARK can be found at www.sparkada.com

Page 23 of 25

=/,
TS

/

Software Engineering
Correctness by Construction Issue: 1.1

Document Control and References

Praxis Critical Systems Limited, 20 Manvers Street, Bath BA1 1PX, UK.
Copyright © Praxis Critical Systems Limited 2004. All rights reserved.

Changes history

Issue 0.1 (12th January 2004): First draft for internal inspection.

Issue 1.0 (12th January 2004): First external issue following inspection.

Issue 1.1 (13th January 2004): Management summary added and minor corrections made.

Changes forecast

May subsequently be developed further.

Document references

1

Correctness by Construction: Developing a Commercial Secure System, Anthony Hall and
Roderick Chapman, IEEE Software Jan/Feb 2002, pp18-25.

Will it Work?, Jonathan Hammond, Rosamund Rawlings and Anthony Hall, in Proceedings of
RE’01, 5th IEEE International Symposium on Requirements Engineering, August 2001

Is Proof More Cost-Effective Than Testing?, Steve King, Jonathan Hammond, Rod Chapman and
Andy Pryor, IEEE Transactions on Software Engineering, Vol 26 No 8, pp675-686, August 2000

The Z Notation: A Reference Manual, J. M. Spivey, 2nd Edition. Prentice-Hall, 1992.
Communicating Sequential Processes, C. A. R. Hoare, Prentice Hall, 1985.

Bergeretti, J-F., and Carré, B. A., Information-Flow and Data-Flow Analysis of While Programs.
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985. p.p.

37-61.

Denning, D. E., and Denning, P. J. Certification of Programs for Secure Information Flow. CACM
Vol. 20, No. 7. July 1977.

United Kingdom Ministry of Defence, The Procurement of Safety Critical Software in Defence
Equipment. DEF STAN 00-55.

Page 24 of 25

=/

10

Software Engineering
Correctness by Construction Issue: 1.1

Using Formal Methods to Develop an ATC Information System, Anthony Hall, IEEE Software,
March 1996, pp 66-76.

Investigating the Influence of Formal Methods, Shari Lawrence Pfleeger and Les Hatton, IEEE
Computer, February 1997, pp 33-43.

Page 25 of 25

Developing Secure Software with Cleanroom Software Engineering

Richard C. Linger Stacy J. Prowell
CERT Research Center Department of Computer Science
Software Engineering Institute The University of Tennessee
Carnegie Mellon University, Pittsburgh, PA Knoxville, Tennessee
rlinger@sei.cmu.edu sprowell@cs.utk.edu

1. Defective Software Cannot be Secure

Secure systems must be composed of secure software components, whether developed or acquired. The
first requirement for secure software is specifications that define secure behavior. The specifications must
define security functionality and be free of vulnerabilities that can be exploited by intruders. The second
requirement for secure software is correct implementation with respect to secure specifications. Software
is correct if it exhibits only the behavior defined by its specification. Defective software can exhibit
behavior not specified, or even known to its developers and testers. Such behavior can likewise be
exploited by intruders. Software is rarely well-specified, and testing is inadequate to eliminate all defects,
so it is not surprising that many systems experience a barrage of intrusions and compromises.
Nevertheless, the necessary foundation for secure software is well-understood; it is specifications that
define secure behavior, and software that correctly implements that behavior. Engineering trade-offs and
human fallibility will always be present in software development and operation, so there can be no
guarantees of security. But there can be little doubt that the goal of secure specifications correctly
implemented will go a long way toward improving the current state of system security. Present methods
of software development have produced the present situation and will continue to do so. Intuitive, trial-
and-error programming practices are widely used in industry, in large part because so many people have
learned to develop software informally and intuitively. Users have learned to expect security failures, and
management has learned to put up with the problems they cause. However, the potentially serious
consequences of intrusion and compromise argue for better methods.

2. Cleanroom Software Engineering For Developing Secure Software

Cleanroom software engineering [1,2] is a theory-based, team-oriented process for developing and
certifying correct software systems under statistical quality control with high productivity. The name
“Cleanroom” conveys an analogy to the precision engineering of hardware cleanrooms. Cleanroom
covers the entire development life cycle, and is independent of programming language and development
environment. Cleanroom technology includes project management by incremental development for risk
reduction, function-based specification and design for intellectual control, functional correctness
verification for approaching zero defects, statistical testing for certification of software fitness for use, and
reverse engineering of existing software to analyze functionality and correctness.

Cleanroom is based on theory, but is not a formal method accessible only to advanced practitioners. It is a
practical engineering discipline for use by journeyman engineering teams for fast development of high
quality software to schedule and budget. Cleanroom is ensured by its theoretical foundations to be failure-
free in its processes, whatever human fallibility may be present in their application. Cleanroom achieves
management risk reduction by developing software in a pipeline of executable, earned-value increments
designed to accumulate into the final system. Statistical quality control over software development is
achieved by separating the design process from the statistical testing process in the pipeline of increments.
And conformance to user requirements is achieved by embedding the pipeline in a customer feedback
loop of increment evaluation.

Cleanroom teams are small with high capability. In small projects, members of a single team are
organized into specification, development, and certification roles. In large projects, multiple teams are
employed and entire teams are assigned these roles.

The technologies of Cleanroom are summarized below:

Incremental Development. System development is organized into a series of fast increments for
specification, development, and certification. Increment functionality is defined such that successive
increments 1) can be tested in the system environment for quality assessment and user feedback, and 2)
accumulate into the final system—successive increments plug into and extend the functionality of prior
increments; when the final increment is added, the system is complete. The theoretical basis for
incremental development is referential transparency between specifications and their implementations.
Incremental development is a powerful risk management strategy in large-scale system development. At
each stage, an executing partial product provides clear evidence of progress and earned value. The
incremental development motto is “quick and clean;” increments are small in relation to entire systems,
and developed fast enough to permit rapid response to user feedback and changing requirements.

Specification and Design. Cleanroom treats programs as implementations of mathematical functions or
relations. Function specifications can be precisely defined for each increment in terms of black box
behavior, that is, mappings from histories of use into responses, or state box behavior, that is, mappings
from stimulus and current state into response and new state. At the lower level of program design,
intended functions of individual control structures can be defined and inserted into code as comments for
use in correctness verification. At each level, behavior with respect to security properties can be defined
and validated.

Correctness Verification. Sizable programs contain an enormous number of execution paths that cannot
all be verified. However, programs are composed of a finite number of control structures that can be
verified against their intended functions, thereby reducing verification to a finite engineering process. A
correctness theorem defines the conditions to be verified for each control structure type. Verification is
carried out in special team inspections with the objective of producing software approaching zero defects
prior to first execution. Vulnerabilities and intrusion pathways, if present, are revealed in the verification
process. Experience shows any errors left behind by human fallibility in verification tend to be superficial
coding problems, not deep design defects.

Statistical Testing. With no or few defects present at the completion of coding, the role of testing shifts
from debugging to certification of software fitness for use through usage-based statistical testing. Models
of usage states and their probabilities are sampled to generate test cases that simulate user operations. The
models treat legitimate and intrusion usage on a par, thereby capturing both benign and threat
environments. In contrast to traditional testing, usage-based testing permits valid statistical prediction of
quality with respect to all the executions not tested, a powerful management tool for reducing risk and
cost. Usage-based testing tends to find any high-failure-rate defects early, thereby quickly improving the
mean time to failure (MTTF) of the software. It is not unusual for testing in traditional software
development to consume half of project resources. Cleanroom testing is more efficient, with a resulting
improvement in project productivity.

3. Cleanroom Fielded Quality Under 0.1 Errors/KLOC

The Cleanroom process has been applied with excellent results. For example, the Cleanroom-developed
IBM Cobol Structuring Facility product automatically transforms unstructured legacy Cobol programs
into structured form for improved maintenance, and played a key role in Y2K program analysis. This 85-
KLOC program experienced just seven minor errors, all simple fixes, in the first three years of intensive
field use, for a fielded defect rate of 0.08 errors/KLOC [3].

Selective application of Cleanroom techniques also yields good results. For example, as reported in [4],
Cleanroom specification techniques were applied to development of a distributed, real-time system.
Cleanroom specifications were developed for system components, and then transformed into expressions
in the process algebra CSP. This allowed use of theorem provers to demonstrate that the resulting system
was deadlock-free and independent of timing issues, thereby permitting migration to faster hardware in
the future without software modifications. The resulting system consisted of 20 KLOC of C++ which ran
correctly in its first test on the target hardware. In twelve months of field use of the system, only eight
minor defects were discovered; all localized coding errors easy to diagnose and fix.

A number of Cleanroom projects involve classified activities that cannot be reported upon. Overall
experience shows, however, that fielded defect rates range from under 0.1 errors/ KLOC with full
Cleanroom application, to 0.4 errors/KLOC with partial Cleanroom application. But this is only part of
the story. Equally significant is the fact that many code increments never experience the first error in
testing, measured from first execution, or in field use. In addition, errors found in testing tend to be
simple coding problems, not more serious specification or design errors.

The following sections describe Cleanroom technologies in more detail.

4. Cleanroom Project Management by Incremental Development
4.1 Cleanroom Engineering Activities

There are three primary engineering activities in the Cleanroom process:

o First, a specification team creates a high-level specification and incremental development plan for a
pipeline of software increments that will accumulate into the final software product. For each
successive increment, a specification is created that includes the statistics of its use as well as its
function and performance requirements. Each increment is sized for rapid development and
verification, say, on the order of five- to twenty-thousand lines of code.

e Second, a development team designs and codes specified increments using object-based design and
functional verification for delivery to the certification team, and provides subsequent correction of
any failures uncovered during certification or field use.

o Third, a certification team employs statistical testing to execute and certify successive partial
accumulations of increments for correctness with respect to functional specifications, based on the
usage specification. It notifies the development team of any failures discovered during certification,
and recertifies as failures are corrected.

These activities take place within the framework of fast iterative development. Figure 1 depicts
relationships among the activities, together with their performance objectives. The management objective
is development of certified software to schedule and budget. The specification objective is correct
definition of increment function and usage. The development objective is software delivered to testing
with no defects. The testing objective is valid certification of software fitness for use. And the customer
feedback objective is conformance to requirements.

The Cleanroom process is a development and certification methodology for releasing software with no
known failures, especially any important failures. It requires a test design based not only on function and
performance specifications, but also on how important each test case is to system behavior. Such a test
design is based on a strategy derived from the statistics of usage expected for the software. Sizable
software products exhibit an essentially infinite number of possible executions. No testing process, no

matter how ambitious, can hope to exercise more than a small fraction of these executions. All testing is
sampling, and the key question is how to draw the sample. If the sample is statistically representative of
anticipated field use, performance of the software on the sample can predict its performance on all the
executions not tested, which field users will experience sooner or later. There is an explicit feedback
process between certification and development on any failures found in statistical usage testing. This
feedback process provides an objective measure of the correctness of the software as it matures in the
development pipeline. It does, indeed, provide a statistical quality control process for software project
management.

I Management by incremental development with statistical certification and customer feedback

objective:
certified software
completed on Specification team:
schedule and requirements analysis |_
budget function specification h objective:
usage specification conformance
to customer
requirements

objective:
correct definition of
function & usage

increment function
specifications

increment usage
specifications

successive
Development team: software

increment design increments

. . . accumulating
Certification team: software

usage modeling increments i Customer

i i jective: statistical testin ;
L Implement.a_t |on_ objective: . i g objective: evaluation
correctness verification | zero defects quality certification pre—r
trv certification
on entry to of software

testing fitness for use

Figure 1. Cleanroom Engineering Processes and Objectives
4.2 Increment Definition and Development

A high-level specification for a software system will identify various classes of users (people and/or other
programs), together with commands and data for invoking various system capabilities. For example,
bringing up an interactive system will require certain kinds of administrative user commands and
initialization data of which ordinary interactive users may not even be aware. However, bringing the
system up is an integral part of system operations. During system operation, several distinct classes of
users may be interacting simultaneously and independently, such as users adding data to the system, or
making inquiries, or monitoring system use and performance. Within each class, many users may be
interacting simultaneously and independently, as well.

However, as simultaneously and concurrently as these various users seem to interact with the system, the
individual computers in the system each operate strictly sequentially in real time, shifting from one user
to another so rapidly that each user gets almost immediate response, even though ten, or a thousand, other
users may have been serviced between the system's last response and the user's next stimulus. As a rule,
users are separated from one another by operating in different, relatively protected, data spaces that
represent the tasks they are performing.

The incremental approach organizes such specification complexities in system behavior into a coherent
progression of successive software increments for development and certification. As noted earlier, the
functional content selected for each increment is critical, to arrive at successive increments that
accumulate into the final system and are testable in the system environment. Early increments typically
establish the operational environment and infrastructure, later increments add functionality. In any case,
the objective is for each new increment to integrate seamlessly into the previous accumulation with no
rework required. Incremental development enables a spiral management process based on visibility and
intellectual control. Each increment is itself a spiral of the process from specification to design to
verification to testing and certification. Each spiral affords a management opportunity to account for
shortfalls and windfalls in planning subsequent spirals. The accumulating increments are provided to
users for requirements validation and feedback as the system evolves into final form.

5. Cleanroom Specification and Design

The Cleanroom process of specification and design is based on a usage hierarchy of modules described by
a set of operations that define and access internally stored data. In order to create and control such designs
in practical ways, Cleanroom specification provides standard, finer grained sub-descriptions for modules
in three forms, namely as black boxes, state boxes, and clear boxes, as follows:

1. Black Box. External view of a module, whose behavior is described as a mathematical function from
history of stimuli (SH) to next response (R).

2. State Box. Intermediate view of a module, whose behavior is described as a mathematical function
from stimuli (S) and current state to next response (R) and new state, plus an initial internal state.

3. Clear Box. Internal view of a module, whose behavior is described in a procedural control structure of
uses of other modules. Such a control structure may define sequential, conditional, iterative, or
concurrent use of the other modules, right down to individual variables.

The black box view of a module can be refined into a state box by identifying those elements of its
stimulus history that must be retained as state data to support all possible black box behavior in the state
box definition. Verification of the state box requires demonstration that its external behavior is identical
to that of the black box from which it was derived. The state box view of a module can be refined into a
clear box by specifying procedures that carry out the state box transition function, possibly through use of
other modules. Verification of the clear box requires demonstration that its external behavior is identical
to that of the state box from which it was derived.

5.1 Black Box Specification by Sequence Enumeration

Sequence enumeration is a method of iteratively discovering the complete, consistent, and traceably
correct black box specification from the initial requirements. Initial system requirements are often written
by end users, domain experts, and requirements analysts, and are quite distinct from the rigorous
specification required by Cleanroom. These initial requirements often do not cover all scenarios of use,
any may contain seemingly inconsistent descriptions of required behavior. Thus, as the sequence
enumeration process unfolds, additional requirements are typically discovered and documented. This
requirements discovery and documentation is a natural and important part of the Cleanroom specification
process.

The first step in sequence enumeration is to construct the list of external interfaces to the system. These
may be interfaces with other hardware and software components, or GUI interfaces with the end user.
This list of interfaces is called the system boundary, and it delimits the problem to be solved.

Next, each interface is considered and stimuli are identified. In this context, a stimulus is some event in
the system's environment which is observed by the executing software, and a response is any system
behavior which is observable from the environment. The complete list of stimuli is the prerequisite for
starting sequence enumeration. For example, for a simple hand calculator the stimuli might be power on,
pressing a digit, pressing an operator, pressing equal, and pressing clear.

A stimulus history is the sequence of all stimuli observed by the system over time. All information
required by the software to generate responses must either be stored in the software itself, or it must come
from the stimulus history. Thus it is possible to write down, for each possible stimulus history, the
appropriate next response, and this is in fact what is done during sequence enumeration. For the hand
calculator with stimulus history “ON 1 2 + 3 4 = the appropriate next response is to display 46. That is,
the value of the black box function is 46 for stimulus history “ON 12 +3 4 ="

Sequence enumeration is performed by writing down each stimulus history, in order by length, and then
noting the appropriate next response (the appropriate response for the most recent stimulus). There are
two special cases to deal with: histories for which no external event should be observed, and histories
which, given the operational definitions of the system and stimuli, are not possible.

There are often histories for which the appropriate next “response” is to do nothing. Consider a
combination safe for which the incorrect combination has just been entered. The safe should not be
unlocked; the software should do nothing. For such histories the “response” is said to be the null
response.

Consider the following history for the simple calculator: “1 2 + 3 4 = ON.” The earliest event in any
history for the calculator must be ON. If there were some other event, say pressing the one digit, then for
this event to be a stimulus it would have to be observed by the executing software. Thus the ON event
would have to have occurred previously, and would appear earlier in the history. In short, the history “1 2
+ 3 4 = ON” cannot occur; it is impossible. Further, no history which starts with this sequence can occur.
All such histories are said to be illegal, and this is noted in place of the response.

As each history is written down, or “enumerated,” the appropriate next response (possibly null) is written.
If the history is illegal, then “illegal” is written in place of the response. Then traces to the initial
requirements are defined which justify the choice of response; every line of the sequence enumeration
must have such justification.

For each history there are initially two possibilities:

o The requirements do not specify a response; they are incomplete. A response must be chosen, and the
reason for the decision written down as a derived requirement.

o The requirements seemingly specify two distinct responses for the history. A single response must be
chosen for each history (though the response may consist of many individual outputs), and the reason
for the decision written down as a derived requirement.

Consider the history “ON 1 2 Clear 1 + 1 =" and the history “ON 1 + 1 =.” Both histories have the same
appropriate next response: display two. Further, if these histories are extended they will always have the
same response because the Clear event in the first history makes the prior entries irrelevant. When two
histories are intended to agree for all extensions, it makes no sense to enumerate both; only one must be
enumerated. In sequence enumeration, the first sequence encountered is extended, but the second
sequences is noted as “equivalent” or “reduced” to the first, and need not be extended.

The sequence enumeration process thus continues by extending each legal, unreduced sequence with
every stimulus. These new sequences are then considered and a response, trace, and possibly an
equivalence noted. When all sequences of the longest length are either illegal or reduced to prior
sequences, the sequence enumeration is complete, and the black box specification is fully defined.

Sequence enumeration is an appropriate technique for specifying systems in which the history of events is
important. It is inappropriate for systems in which the history is unimportant, such as numerical
computations. Fortunately, for most computational problems the mathematical description can serve as
the black box specification.

5.2 Sequence Abstraction

The sequence enumeration process described above results in the generation of many sequences to be
considered. To control the enumeration process and make it tractable, abstract stimuli are invented and
documented. An abstract stimulus is a named condition based on the prior history and the current
stimulus. For example, for a combination safe it might make sense to define the following abstract
stimuli:

o If three correct combination digits have been entered, and the current stimulus is the fourth correct
combination digit, then this is “correct combination,” denoted CC.

o Ifthree combination digits have been entered, and the current stimulus is the fourth digit, and the four
digits entered are not the correct combination, then this is “incorrect combination,” denoted IC.

The introduction of this abstract stimuli CC and IC allows one to discard the individual combination digit
entries from the enumeration and instead enumerate with the abstract stimulus CC. For example, the
history “ON Lock 1 2 3 4” might correspond to the abstract sequence “ON Lock CC.” The abstract
history does not replace the original history, it is simply a different way to view the history which omits
details in a referentially-transparent way. Appeal can be made to individual digit presses when necessary,
for example using predicates [6].

For the calculator one could define an abstract stimulus N which applies “if the current stimulus is a digit
and the prior stimulus was not a digit.” This simple abstract stimulus allows one to change the view
during enumeration from histories of the form “ON 1 2 + 3 4 =" to abstract histories of the form “ON N +
N =.” Further, one can now equate the history “ON N + N +” and “ON N +,” resulting in less work
during enumeration.

Abstractions are introduced to solve problems encountered during enumeration. Thus one discovers and
documents abstractions while performing sequence enumeration.

5.3 Sequence Enumeration Example

The following miniature example is adapted from [6]. The requirements for a simple combination safe are
as follows:

1. The combination consists of four digits (0-9) which must be entered in the correct order to unlock the
safe. The combination is fixed in the safe firmware.

2. Following an incorrect combination entry, a “clear” key must be pressed before the safe will accept
further entry. The clear key also resets any combination entry.

3. Once the three digits of the combination have been entered in the correct order, the safe unlocks and
the door may be opened.

4. When the door is closed, the safe automatically locks.

The safe has a sensor which reports the status of the lock.

The safe ignores keypad entry when the door is open.

There is no external confirmation for combination entry other than unlocking the door.

It is assumed (with risk) that the safe cannot be opened by means other than combination entry while
the software is running.

XN W

The system boundary consists of the interfaces with external power, the keypad, the door sensor, and the
lock actuator. The stimuli are digit presses (0-9), pressing the clear key (Clear), and closing the door
(Door). In addition, the power on event is a stimulus. At power on, the door sensor can be read, giving
the stimuli power on with door locked (PL), and power on with door unlocked (PU). Power off is not a
stimulus, because the software cannot observe the event.

Enumeration of individual digit presses is an inefficient way to explore the specification of this system.
Therefore the abstract stimuli CC and CI defined previously will be used. The following enumeration is
obtained.

History Response Equivalence Trace

CcC Illegal 9

CI llegal 9
Clear Illegal 9
Door Illegal 9

PL Null 5
PU Null 5

PL CC Unlock PU 1,3,7
PL CI Null 1,2,7
PL Clear Null PL 2,7
PL Door Illegal 8

PL PL Null PL 5,10
PL PU Null PU 5,10
PU CC Null PU 6
PU CI Null PU 6
PU Clear Null PU 6
PU Door Lock PL 4
PUPL Null PL 5,10
PU PU Null PU 5,10
PLCICC Null PL CI 2,7
PL CICI Null PL CI 2,7
PL CI Clear Null PL 2,7
PL CI Door Illegal 8

PL CIPL Null PL 5,10
PL CIPU Null PU 5,10

Note that the histories of the longest length are all either illegal or reduced to a previous sequence; the
enumeration is complete. Further, the following additional requirements are discovered during the
enumeration process.

9. Histories with stimuli prior to system initialization are illegal by system definition.
10.Re-initialization (power-on) makes previous history irrelevant.

5.4 Sequence Analysis and the State Box
The enumeration is organized to facilitate systematic discovery of the correct behavior of a system in all
scenarios of use, but not necessarily in the best form for further development. The results from the

enumeration must be re-organized to obtain the state box. This is done via sequence analysis.

The unreduced, legal histories in the enumeration are called canonical histories, and they represent the
states of the system. In the above enumeration, the following histories are canonical.

« PL
e« PU
e« PLCI

The empty history (the history of no events) is taken to represent the initial conditions of the system.
Then each history of length one is considered, and the question is asked “how does processing the given
stimulus change the conditions?” This leads to information about the state prior to the stimulus and
conditions after the stimulus. This process is then repeated with the histories of length two (which must be
single-stimulus extensions of canonical histories of length one), etc., until all sequences have associated
conditions.

One possible outcome of the sequence analysis for the three canonical sequences is the following.

Sequence Door Combination
Empty unknown
PL locked none
PU unlocked
PL CI locked bad

Now conversion of the enumeration into a state box is reduced to bookkeeping. Each row of the
enumeration can be viewed as a canonical history, a single-stimulus extension, a response, and a new
sequence (either the equivalent sequence, or the full sequence itself if no equivalence is noted).

As an example, consider the stimulus CC. First all rows ending in this stimulus are extracted from the
enumeration.

History Response Equivalence Trace
CC Illegal 9
PL CC Unlock PU 1,3,7
PUCC Null PU 6
PLCICC Null PL CI 2,7

The illegal sequence CC can be omitted. Now the last stimulus (CC) is dropped, and each history is
replaced with its conditions from the sequence analysis. The columns are re-labeled, and the state box
table is obtained.

Current State Response Changed State Trace
Door=locked and Unlock Door=unlocked 1,3,7
Combination=none
Door=unlocked Null No change 6
Door=locked and Null No change 2,7

Combination=bad

Note that this table is correct by construction, and that it is traced to the requirements as a side effect of its
construction.

5.3 Implementation

The components of the state box must be allocated against whatever software architecture has been
defined. Specifically, the following must be defined in terms of the implementation.

e How each stimulus is gathered.
o How each response is generated.
o How each item of state data is implemented.

In addition, if there are any abstractions remaining, these must be removed at this point by specifying an
implementation. Any of these issues may have considerable complexity, and one may choose to iterate
the black, state, and clear boxes for the chosen item. For example, generating a particular response may
require considerable calculation.

After implementations are chosen for each component of the state box, one can write an implemented
state box, in which the cells are replaced with the source code which implements the cell. This helps
organize the verification problem (see the next section). Each cell of the implemented state box is verified
against the corresponding cell of the original state box.

For example, the following might be the implemented state box based on the previous state box
specification.

Current State Response Changed State Trace
door && !combobad * (LOCK)=0; door=0 1,3,7
!door 6
door && combobad 2,7

The contents of the implemented state box tables are inserted into the software architecture, yielding the
clear box as executable code. The above implemented state box table might result in the following code.

/* Correct combination entered. See requirements 1,3,7. */
if (door && !combobad) {

* (LOCK) =0;
1

10

Cleanroom methods enforce completeness and precision in specification and design. With system
functionality and structure well defined and understood, subsequent verification and certification efforts
become more effective and efficient than otherwise possible.

6. Cleanroom Correctness Verification

Cleanroom development depends on verification in special team inspections to achieve functional
correctness of software increments. The mathematical foundations of functional verification arise from a
view of the sequential logic of programs as implementations of mathematical functions or relations. Such
functions need not be numerical, of course, and most programs do not define numerical functions. But for
every legal input a program directs the computer to produce a unique output, whether correct as specified
or not. And the set of all such input, output pairs is a mathematical function. With these mathematical
foundations, software development becomes a process of constructing rules for functions that meet
required specifications, which need not be a trial-and-error process.

A program or program part defines a single, possibly complex function. In program design, that function
is expressed in control structures and sub-functions, which are in turn expressed in control structures and
sub-functions, etc., continuing in this manner until statements of the programming language are reached.
This process produces an algebraic structure of single entry/single-exit sequenced, nested, and iterated
control structures, each of which is a refinement of a sub-function documented with it in the design. As
noted earlier, while sizable programs can embody an essentially infinite number of execution paths, they
are composed of a finite number of control structures, each of which can be verified in team inspections
in a finite number of steps. These required steps are defined by correctness questions (based on a
correctness theorem) as shown in Table 1 for representative structures. The table also defines the function
equations that are the basis for the correctness questions, expressed in terms of function composition, case
analysis, and for the whiledo, composition and case analysis in a recursive equation based on the
equivalence of an iteration control structure and an ifthen control structure. In the table, P represents the
control structure, f represents the intended function, g and h represent sub-functions, p represents a
predicate, square brackets represent the function of the enclosed program, “|” represents the “or” operator,
“0” represents the composition operator, and “I” is the identity function.

In spite of the experiences and assumptions of this first human generation of software development, there
is nothing experimental about program behavior except its invention by people. As mathematical artifacts,
programs admit mathematical inspection and verification of whether they meet mathematical
specifications. Of course mathematics does not mean numerical and most programs are not strictly
numerical. A simple sort program performs a mathematical function in mapping a set of items into a
sorted sequence of those same items. In this first human generation of programming, programs are
drafted, tested, fixed, retested, refixed, etc., as an experimental activity. In this process, intellectual
control is lost, ending with programs people hope are right, but which are frequently not quite right.

Since programs are strict rules for mathematical functions or relations, their correctness can be
determined by mathematical inspection and verification against specifications. Just as place notation and
long division made correct operations in arithmetic more practical, methods exist in software engineering
to make functional correctness verification a practical reality. The mathematics are relatively simple,
more like long division than nuclear physics. These simple mathematics are applied over and over in
verifying large programs. Good program organization, both in control and data, make this process
possible and practical for disciplined software engineers. Experience shows that failures detected
following verification are very different from failures following debugging. Verification failures are
usually due to simple coding errors, and very seldom due to deeper problems with design. These errors
are easily found and fixed in early testing, with few, if any, subsequent failures.

11

Structure Program Function Equation Correctness Question
Sequence P: [f] f=[P]=[g:h]=1[g] o [h] For all possible arguments,
do does g followed by h do f?
g;
h
enddo
Ifthenelse P: [f] f=[P] = [if p then g else h endif] = For all possible arguments,
if p ([p] = true > [g]| whenever p is true,
then [p] = false = [h]) does g do f,
g and whenever p is false,
else does h do f?
h
endif
Whiledo P: [f] f=[P] = [while p do g enddo] = For all possible arguments,
while p | [if p then g; while p do g enddo endif] = is termination guaranteed,
do [if p then g; f endif] = and whenever p is true,
g f=([p] =true = [f] o [g] | does g followed by f do f,
enddo [p] = false 2>) and whenever p is false,
does doing nothing do ?

Table 1. Control Structure Semantics and Verification Conditions

The control structures of Table 1 are expressed in design language form, but are easily written in Java, C,
or any other procedural language. The function f is independent of the programming language, and can be
expressed in a variety of forms, from natural language to mathematical notation. As can be seen in the
Table, sequence verification requires checking one condition (composition of sequence parts), ifthenelse
verification requires checking two conditions (iftest true and false cases), and whiledo verification
requires checking three conditions (termination, plus whiletest true and false cases).

Figure 2 enumerates the correctness conditions required for verification of a miniature program (and
illustrates recording of intended functions, shown enclosed in square brackets). Fifteen conditions must be
checked, easily accomplished in a few minutes in a team inspection. If, say, five people check each
condition, a simultaneous reasoning mistake by all five would be required for a faulty verification, an
unlikely occurrence.

12

[Q := odd_numbers(Q) || even_numbers(Q)]

PROC Odd_Before_Even(Q)
odds, evens: queue of integer, initial empty
X: integer whiledo
[Q, odds, evens := empty, odds || odd_numbers(Q), evens || even_numbers(Q)] (3 cond)
WHILE Q <> empty -]
DO [x is odd -> odds := odds || end(Q) or x is even -> evens := evens || end(Q)]

x 1= end(Q) sequence
[x is odd -> odds := odds || x or X is even -> evens := evens || x] (1 cond)

IF odd(x)
THEN

sequence end(odds) := x ifthenelse
(1 cond) ELSE (2 cond)

end(evens) := x
ENDIF
ENDDO

[Q, odds := Q || odds, empty]
WHILE odds <> empty
DO [end(Q) := end(odds)]

o whiledo
X := end(odds) sequence (3 cond)
end(Q) :=x (1 cond)
ENDDO

[Q, evens := Q || evens, empty]
WHILE evens <> empty

DO [end(Q) := end(evens)] whiledo —
otal:

x = end(evens) sequence (3 cond) 15 correctness
end(Q) :=x (1 cond) conditions to
check

ENDDO

ENDPROC

Figure 2. Correctness Conditions for a Miniature Program
7. Cleanroom Certification of Software Fitness for Use

Software specifications deal with functional behavior and performance. Functional behavior is ordinarily
decomposed into various sub-functions in ways understandable by users, and often obtained from users as
requirements. Performance will usually affect design in fundamental ways, and expected usage of the
software will have critical impacts on performance issues. For example, a database system, with
significantly more querying than data addition or deletion, may call for a design with high-performance
queries at the expense of data addition and deletion performance, but such a design can be entirely
unsatisfactory with different usage. Thus, expected usage statistics can play a key role in software system
design.

There is another critical use for usage statistics as part of software specifications; to permit the certifi-
cation of software. Software behavior depends not only on how correct the software is but also on how it
is used. For every possible state of internally stored data, any command and input data is handled either
correctly or incorrectly, denoted by a failure in the latter case at some level of seriousness.

With a statistical usage specification, the probability of each selection of user (person or program) com-

mands and input data will be known. Markov models can be used to represent statistical usage
specifications as directed graphs that step from one usage state to another according to anticipated

13

transition probabilities. Any such traversal through the model is a test case for the software. Sampling
the model to produce test cases according to usage probabilities creates a test suite that represents
anticipated field usage. These cases can be executed and the results compared to the functional speci-
fication, which defines the new internal state for each command and input as well as the response to the
user. When such testing is carried out under a formal statistical protocol, the results predict eventual field
experience with the software.

7.1 Testing for Software Certification

In the Cleanroom process, assuring quality of the resulting system is a lifecycle activity that encompasses
all specification, design, verification, and testing. The purpose of Cleanroom testing is to demonstrate a
certified level of performance based on expected use.

Software is either correct or incorrect with respect to a well-defined specification, in contrast to hardware,
which is reliable to some level in performing a design that is assumed to be correct. For small programs, it
may be possible to exhaustively test the software to determine correctness. Even then, failures can be
overlooked from human fallibility. But software of any size or complexity can only be tested partially,
and typically a very small fraction of possible inputs are actually tested. At first glance, the fractions are
so small for systems of ordinary size that the task of testing looks impossible. But when combined with
mathematical verification, getting correct software is indeed possible.

Certifying the correctness of such software requires statistical testing with inputs characteristic of actual
usage. For interactive software, the statistical correlation of successive inputs must be treated, as well. If
any failures arise in testing or subsequent usage, the certification must be redone. So certifying the
correctness of software is an empirical process that is bound to succeed if the software is indeed correct
and may succeed for some time if the software is incorrect.

While possibly frustrating at first glance, this is all humans can assert about the correctness of software.
In both verification and testing, human fallibility is present. But on second glance, the sequential history
of certification efforts provides a human basis for assessing the quality of the software and expectations
for achieving future correctness.

7.2 The Software Certification Process

Certification of software on a scientific basis requires a statistical usage specification as well as functional
and performance specifications. As noted, a statistical usage specification is typically given in a Markov
model as possible use transitions plus probabilities that the transitions will occur. Thus, frequent and
infrequent uses have higher and lower probabilities, respectively. If necessary, infrequent uses with high
consequences of failure, for example, invoking the code for emergency reactor shutdown, can be modeled
for specific certification by adjusting relative probabilities. The testing must be carried out by statistical
selection of tests from these usage specifications. Some uses of the software may be much more important
than other uses, and the statistical selections can be given in various levels of stratified sampling. Thus,
not only basic statistical usage is to be defined, but the relative importance of correctness for each usage.
An extreme form of stratified testing is important cases chosen with probability 1.0.

The balance between a few important cases and general cases takes good engineering design in the best
use of test capabilities that is seldom explicitly addressed today. The number of tests is a matter of test
design, from which the reliability of software that passes the test design can be calculated. This is new
information that is often not known today until the software is put to actual use. Without usage
specifications, testing can be inadequate and result in a surprising number of failures during field use of
software because it is used differently than expected.

14

For sizable systems, statistical testing is a repeating, stepwise process, each step carried out when a new
accumulation of increments is delivered from the developers. If a failure is found in testing, the software
should be returned to the developers for correction. When the required correction is identified and made,
testing can be redone. Measurements such as Time To Failure (TTF) can be recorded for each failure
discovered. Time Without Failure (TWF) can be tracked when no failures have appeared. This TWF can
be tracked after the software is distributed to users as part of the characterization of its correctness.

7.3 Stratification Planning

First a test boundary must be identified. As with the system boundary, this is a list of interfaces, but it
may be different from the system boundary. For example, the system boundary may include several
hardware interfaces, but for the purpose of testing it may be impractical to drive these interfaces directly.
For each interface identified in the test boundary, it must be possible to control all inputs (in order to
execute the test), and to record all outputs (in order to correctly detect failure and success).

Since testing is based on expected usage, the factors which affect use of the system must be identified.
Typically, one identifies the following.

o Users. Who or what will issue inputs to the system under test?
e Uses. What are the purposes for which the system will be used?
e Environments. What are the environments in which the system will be used?

The primary classes of users, uses, and environments are identified. A combination of user, use, and
environment which makes sense for testing is called a stratum. In the stratification plan all strata of
interest are identified. Finally, the percentage of overall test budget which is to be allocated to the stratum
is identified. The stratification plan may also identify other tests to be executed to satisfy contractual or
other requirements.

7.4 Certification as Statistical Experiment

Even for simple software systems, the domain of possible tests is quite large. For example, software
which only multiples two 64-bit floating point numbers has an input space of approximately 3.4x10%*
inputs. When inputs can be sequenced to obtain different results, the domain of possible tests becomes
infinite. Thus all testing is sampling.

Treating software testing as a statistical experiment requires that one construct a model of the population;
in this case a model which denotes the software uses of interest and their expected relative weights. The
sample may then be drawn based on the model, and evaluated with respect to the model.

Markov chain usage models have proven themselves effective in specifying the population of tests and
their relative weights. Further, Markov chain usage models have a significant analytical capabilities [7].
One can perform a static analysis of the model to determine if it matches anticipated usage, and can
analyze the results of testing to determine statistics such as reliability, TTF, and TWF.

Every Markov chain usage model must have a corresponding definition of use. This is a general statement
of what a single use (or test) will contain. For example, a use might be defined for a telephone as starting
with the phone idle and on-hook, and ending with the phone again idle and on-hook after having been
successfully connected in a call at least once. From the definition of use, one identifies two special states,
called the source and the sink. The source state is the unique start state for testing, while the sink state is
the unique terminating state for the test. Both states must be verifiable. This is to ensure that the tests are
independent. The remainder of the Markov chain is created to satisfy the definition of use. A single use
(or test) is a path from the source to the sink, and it consists of a sequence of usage events to be executed

15

against the system under test. For example, a Markov chain implementing the definition of use given
above is shown in Figure 3 as a directed graph with transition probabilities.

hang up
(1.0}

dial bad
(0.25

On Hook

incoming call
(0.5)

disconnect
(0.5)

hang up
(0.25)

lift receiver
(0.5)

hang up hang up
(0.5) (1.0}

dial good
(0.25)

lift receiver
(0.5)

disconnect
(0.5)

Ring Tone

connect
(0.5)

hang up
(0.5)

Exit
Figure 3. Telephone Markov Model

Analysis of the model reveals that a test consists of 18 events, on average, with a standard deviation of
about 8 events. Other statistics include:.

e An incoming call occurs in about 94% of tests in the long run.
e On average the phone will be connected in a call twice during a single test.

The statistics are used to correct the model so that it more closely matches the expectation of use.
One test case which can be generated from the phone model is lift receiver, dial busy, hang up, incoming
call, lift receiver, hang up. This sequence of events would be executed against the system under test, and

the response to each event recorded. One could then verify that each response was correct with respect to
the system's specification.

16

Tests may be generated in a variety of ways.

o Tests may be generated randomly, conditioned by the probabilities in the model.

o Tests may be generated in order by weight, so that the highest-probability test case is generated first,
the second-highest probability test is generated next, etc.

e One or more tests can be generated which cover the model (visit all arcs) with the smallest number of
events. This is called the minimum coverage set.

Delivered software and the Markov chain usage model must match one another. It must be possible to
execute the tests generated from the model against the software under test. In order to gain confidence
that this can be done, one typically executes the minimum coverage set, as this requires executing each
usage event from every state of the usage model.

After tests have been generated and executed, and the results of the test recorded, one can use the
information to generate quality estimates such as reliability, TTF, and TWF [7]. This information can also
be used to determine when to stop software testing [8].

8. Cleanroom Reverse Engineering

Cleanroom foundations provide a basis for reverse engineering of existing programs, for example, the
source code of acquired components, to improve understandability and analyze functionality. First, a
structure theorem defines a simple stepwise process for transforming the logic of poorly structured
programs into structured form to increase their understandability. Second, the Cleanroom function
equations of control structures defined in Table 1 for correctness verification can also serve as the starting
point of a stepwise process for extracting and documenting the as-built functional specifications of
existing programs, that is, how programs transform inputs into outputs in all circumstances.

Function extraction as defined by these foundations can be usefully performed as a manual process.
However, automation possibilities are of substantial interest, because traditional software engineering
provides no practical means to fully evaluate the behavior of programs. In this case, “evaluation” means
understanding full functional behavior, whether right or wrong, intended or the result of malicious
intervention. In today’s state of art, a software engineer cannot say for sure what a sizable program does
in all circumstances of use without an impractical expenditure of time and effort. The result is often
unknown functionality in programs available for malicious exploitation.

Understanding program behavior today is an error-prone, resource-intensive process carried out in human
time scale; nevertheless, it is essential for uncovering security gaps and vulnerabilities. And because
attackers can make malicious modifications to programs at any time, the task of behavior discovery never
ends. Sizable programs are hard to understand because they contain an intractable number of execution
paths, any of which can contain errors or security exposures. Faced with massive sets of possible
executions, programmers can often do no more that gain a general understanding of mainline behavior.

While automation of function extraction would help address these problems, computation of program
behavior is a difficult problem that poses many theoretical and engineering challenges. It turns out that
the function equations of Cleanroom illuminate a challenging, but feasible, strategy for automating
function extraction, with the opportunity to move from an uncertain understanding of program behavior
derived in human time scale to a precise understanding computed in CPU time scale.

As noted above, the function-theoretic model treats program control structures as implementations of
mathematical functions or relations, and programs are composed of a finite number of control structures.
This finite property of program logic viewed from the perspective of function theory opens the possibility
of automated calculation of program behavior. Every control structure in a program has a non-procedural

17

behavior signature that defines its net functional effect. Behavior signatures can be extracted and
composed with others in a stepwise process based on an algebra of functions that traverses the control
structure hierarchy. The resulting behavior signature of an entire program represents the specification that
it implements. This specification coalesces and aggregates full functional behavior, including the behavior
of any vulnerabilities or malicious code, no matter how distributed or disguised in the program text. The
theoretical challenges to automated function extraction may have acceptable engineering solutions. For
example, while no general theory for loop behavior calculation can exist, pattern recognition can help
provide an engineering approach.

It is a formidable task to achieve security and reliability goals for systems without knowing what their
programs do in all circumstances. In the current state of practice, this knowledge is accumulated in bits
and pieces from specifications, designs, code, and test results. Ongoing program maintenance and
evolution limit the relevance of even this hard won but perishable knowledge. But programs are
mathematical artifacts subject to mathematical analysis. While human fallibility is still present in
interpreting the analytical results, there can be little doubt that routine availability of calculated behavior
would substantially reduce errors, vulnerabilities, and malicious code in software, and make intrusion and
compromise more difficult and detectable. Furthermore, broader questions about security capabilities for
authentication, encryption, filtering, etc., are in large part questions about the behavior of programs that
implement these functions. And beyond security considerations, behavior calculation will impact many
software engineering activities, from specification and design to testing and maintenance.

9. The Future of Cleanroom

The need for reliable software systems will only increase as society’s dependency on information
technology becomes more pervasive. At the same time, competitive pressures are forcing software
development to become more responsive and productive. Cleanroom development produces high-quality
software with high productivity at reduced cost by eliminating debugging and rework and reducing time
and effort required for testing. It allows project management to reduce risk by linking resource
consumption and earned value through incremental development. And it provides customers with the
surety of valid quality certification at delivery. Cleanroom application is growing as these benefits
become more widely recognized.

Many Cleanroom processes are automatable. For example, many operations in correctness verification
can be carried out automatically, and others will benefit from interactive cooperation between human
analysis and machine guidance and recordkeeping. As Cleanroom matures, more tool capabilities can be
expected to emerge.

10. References

[1] H. Mills and R. Linger, “Cleanroom Software Engineering,” Encyclopedia of Software Engineering,
2nd ed., (J. Marciniak, ed.), John Wiley & Sons, New York, 2002.

[2] S. Prowell, C. Trammell, R. Linger, and J. Poore, Cleanroom Software Engineering: Technology and
Process, Addison Wesley, Reading, MA, 1999.

[3] R. Linger, “Cleanroom Process Model,” IEEE Software, IEEE Computer Society, March 1994.
[4] G. Broadfoot and P. Broadfoot, “Academia and Industry Meet: Some Experiences of Formal Methods

in Practice,” Proceedings of the Tenth Asia-Pacific Software Engineering Conference, Chiang Mali,
Thailand, December 2003, IEEE Computer Society.

18

[5] M. Pleszkoch and R. Linger, “Improving Network System Security with Function Extraction
Technology for Automated Computation of Program Behavior,” Proceedings of Hawaii International
Conference on System Sciences-38 (HICSS-38), Hawaii, January, 2004, IEEE Computer Society Press.

[6] S. Prowell and J. Poore, “Foundations of Sequence-Based Software Specification,” IEEE Transactions
on Software Engineering, v. 29, n. 5, May 2003.

[7] S. Prowell, “Computations for Markov Chain Usage Models,” University of Tennessee Computer
Science Technical Report UT-CS-03-505, 2003.

[8] S. Prowell, “A Cost-Benefit Stopping Criterion for Statistical Testing,” Proceedings of Hawaii

International Conference on System Sciences-38 (HICSS-38), Hawaii, January, 2004, IEEE Computer
Society Press.

19

Security and Capability Maturity Models

Joe Jarzombek, PMP
Deputy Director for Software Assurance
Information Assurance Directorate
Office of the Assistant Secretary of Defense
(Networks and Information Integration)
Joe.Jarzombek@osd.mil

[Process models provide goal-level definitions for and key attributes of specific processes
(for example, security engineering processes), but do not include operational guidance
for process definition and implementation — they state requirements and activities of an
acceptable process but not how to do it. Process models are not intended to be how-to
guides for improving particular engineering skills. Instead, organizations can use the
goals and attributes defined in process models as high-level guides for defining and
improving their management and engineering processes in the ways they feel are most
appropriate for them. Eds.]

Introduction

Capability Maturity Models (CMMs) are a type of process model intended to guide
organizations in improving their capability to perform a particular process. CMMs can
also be used to evaluate organizations against the model criteria to identify areas needing
improvement. CMM-based evaluations are not meant to replace product evaluation or
system certification. Rather, organizational evaluations are meant to focus process
improvement efforts on weaknesses identified in particular process areas. CMMs are
currently used by over a thousand organizations to guide process improvement and
evaluate capabilities.

There are currently three CMMs that address security, the Capability Maturity Model
Integration” (CMMI®), the integrated Capability Maturity Model (iCMM), and the
Systems Security Engineering Capability Maturity Model (SSE-CMM) . A common
Safety and Security Assurance Application Area (similar to a Process Area) is currently
under review for the iICMM and CMMI, along with a new Process Area for Work
Environment, and the proposed goals and practices have been piloted for use. All of
these CMMs are based on the Capability Maturity Model (CMM®)

The iCMM and CMMI have both been in use for more than three years. Some initial
evidence exists of processes defined using this model that reduced overall defect content
[Goldenson]. Since the Safety and Security Application Area is still under development,
no evidence currently exists of reduced security vulnerabilities. However, both the
CMMI and the iCMM are based on the CMM and there is evidence showing that higher
maturity organizations tend to produce software with fewer defects. Table 1 shows
average defect densities by CMM maturity level [Davis].

Table 1: Average Defect Density of Delivered Software

CMM Level Defect/ KLOC
Level 1 7.5

Level 2 6.24

Level 3 4.73

Level 4 2.28

Level 5 1.05

Capability Maturity Model Integration

The Capability Maturity Model Integration® (CMMI®) helps organizations improve their
processes. Improvement areas covered by this model include systems engineering,
software engineering, integrated product and process development, supplier sourcing,
process management and project management.

Further information on the CMMI is available at http.//www.sei.cmu.edu.

integrated Capability Maturity Model

The iCMM is widely used in the Federal Aviation Administration. Version 2.0 of the
iICMM builds on the CMM and iCMM v1.0 and provides a single model of best practices
for enterprise-wide improvement, including outsourcing and supplier management.
Version 2 added process areas to address integrated enterprise management, information
management, deployment/transition/disposal, and operation/support. It integrates the
following additional (beyond the sources for version 1) standards and models: ISO
9001:2000, EIA/IS 731, Malcolm Baldrige National Quality Award and President's
Quality Award criteria, CMMI-SE/SW/IPPD and CMMI-A, ISO/IEC TR 15504,
ISO/IEC 12207, and ISO/IEC CD 15288.

The iCMM v2 is available at the following web sites: www.faa.gov/aio or
www.faa.gov/ipg

Systems Security Engineering Capability Maturity Model (SSE-CMM)

The SSE-CMM?™ is a process model that can be used to improve and assess the security
engineering capability of an organization. The stated purpose for developing the model is
that, although the field of security engineering has several generally accepted principles,
it lacks a comprehensive framework for evaluating security engineering practices against
the principles. The SSE-CMM, by defining such a framework, provides a way to
measure and improve performance in the application of security engineering principles.

The model is organized into Process Areas. Each Process Area is comprised of a related
set of process goals and activities.

The twenty two Process Areas of the SSE-CMM are:
Administer Security Controls
Assess Impact

Assess Security Risk

Assess Threat

Assess Vulnerability

Build Assurance Argument

Coordinate Security

Monitor Security Posture

Provide Security Input

Specify Security Needs

Verify and Validate Security

Ensure Quality

Manage Configuration

Manage Project Risk

Monitor and Control Technical Effort

Plan Technical Effort

Define Organization’s Systems Engineering Process
Improve Organization’s Systems Engineering Process
Manage Product Line Evolution

Manage Systems Engineering Support Environment
Provide Ongoing Skills and Knowledge

Coordinate with Suppliers

Version 2 of the Systems Security Engineering Capability Maturity Model (SSE-CMM)®
is now an ISO standard and a version 3 is now available. Further information about the
model is available at http://www.sse-cmm.org.

Safety and Security Assurance Application Area for CMMI and iCMM

Because of the integration of process disciplines, CMMI and iCMM are used by more
organizations than the SSE-CMM; yet the two integrated models have had gaps in their
coverage of safety and security. Therefore, organizations within the US Federal Aviation
Administration (FAA) and US Department of Defense (DoD) are sponsoring a joint effort
with the objective of identifying best safety and security practices for use in combination
with the two integrated CMMs: FAA-iCMM v2.0, and CMMI V1.1. This project is
being co-managed by FAA Chief Engineer for Process Improvement and Deputy
Director for Software Assurance in DoD, with broad participation from government and
industry.

Both the iCMM and the CMMI provide an excellent technical and process model
foundation for safety and security; however, without the proposed application area or
Work Environment Process Area, they don’t include sufficient focus on safety and

security practices. In order to provide this focus without duplication of material in the
existing models, a new model construct, Application Area, was developed by the project.
The Safety and Security Application Area (AA) identifies standards-based application
practices (APs) expected to be used as criteria in guiding process improvement and in
appraising an organization’s capabilities for providing safe and secure products and
services. These application practices are used in conjunction with Capability Maturity
Model Integrated (CMMI) or the FAA integrated Capability Maturity Model (iCMM).

The purpose of Safety and Security Assurance is to establish and maintain a safety and
security capability, define and manage requirements based on risks attributable to threats,
hazards, and vulnerabilities, and assure that products and services are safe and secure. Its
four goals are:

1. An infrastructure for safety and security is established and maintained.

2. Safety and security risks are identified and managed.

3. Safety and security requirements are satisfied.

4. Activities and products are managed to achieve safety and security requirements

and objectives.

Source Material selected by experts from safety and security communities of practice to
be integrated and incorporated in the AA comprises three safety standards and four
security standards.

e For safety:
o MIL-STD-882C: System Safety Program Requirements
o IEC 61508: Functional Safety of Electrical/ Electronic/ Programmable
Electronic Systems
o DEF STAN 00-56: Safety Management Requirements for Defence
Systems
e For security:
o ISO 17799: Information Technology - Code of practice for information
security management
o ISO 15408: The Common Criteria (v 2.1) Mapping of Assurance Levels
and Families
o ISO/IEC 21827: Systems Security Engineering (SSE) CMM (v2.0)
o NIST 800-30: Risk Management Guide for Information Technology
Systems

Scope of Safety and Security Assurance Extension to CMMI and iCMM

As described in the draft material currently out for review, the Safety and Security
Application Area groups together related application practices (APs) that are considered
essential for achieving the requisite outcomes particular to the Safety and Security
disciplines. The application practices are implemented by performing practices that are
already in process areas of the reference model, with explicit guidance derived from
source standards. Thus, this application area provides a guide for identifying which
selected process areas and practices in a reference model need to be implemented to
address the purpose of safety and security. The application practices also provide
additional interpretive guidance for ways that the practices in the reference model might
be implemented in the particular context of safety and security.

The new AA was developed in order to make the practice of safety and security in
organizations explicitly improvable and appraisable; as such, the safety and security
application practices needed to be structured as “expected” practices. Simply adding
informative material to existing practices in the reference models would have provided no
assurance that safety and security would be included in process improvement or appraisal
of capabilities. The AA also provides direct visibility, in a single location, to those
practices needed for safety and security assurance.

Achievement of Safety and Security goals can be assessed based on evidence of
implemented practices:

AA Goal 1 — An infrastructure for safety and security is established and maintained.

APO1.01. Ensure safety and security awareness, guidance, and competency.

APO01.02. Establish and maintain a qualified work environment that meets safety and

security needs.

APO01.03. Establish and maintain storage, protection, and access and distribution control
to assure the integrity of information.

APO01.04. Monitor, report and analyze safety and security incidents and identify
potential corrective actions.

APO01.05. Plan and provide for continuity of activities with contingencies for threats
and hazards to operations and the infrastructure.

AA Goal 2 — Safety and security risks are identified and managed.

APO01.06. Identify risks and sources of risks attributable to vulnerabilities, security
threats, and safety hazards.

APO01.07. For each risk associated with safety or security, determine the causal factors,
estimate the consequence and likelihood of an occurrence, and determine
relative priority.

APO01.08. For each risk associated with safety or security, determine, implement and
monitor the risk mitigation plan to achieve an acceptable level of risk.

AA Goal 3 — Safety and security requirements are satisfied.

APO01.09. Identify and document applicable regulatory requirements, laws, standards,
policies, and acceptable levels of safety and security.

APO1.10. Establish and maintain safety and security requirements, including integrity
levels, and design the product or service to meet them.

APO1.11. Objectively verify and validate work products and delivered products and
services to assure safety and security requirements have been achieved and
fulfill intended use.

APO1.12. Establish and maintain safety and security assurance arguments and
supporting evidence throughout the lifecycle.

AA Goal 4 — Activities and products are managed to achieve safety and security
requirements and objectives.

APO1.13. Establish and maintain independent reporting of safety and security status and
issues.

APO1.14. Establish and maintain a plan to achieve safety and security requirements and
objectives.

APO1.15. Select and manage products and suppliers using safety and security criteria.

APO1.16. Measure, monitor and review safety and security activities against plans,

control products, take corrective action, and improve processes.

Other Models

There are many other process and quality improvement models, methods, and practices
available. We did not explore these in detail. Some better known ones are ISO 9001 and
ISO 9000-3, ISO15504, Total Quality Management, and Six Sigma.

Final Remark

A key point needs to be made about the use of models to guide process improvement and
evaluate capabilities. Product evaluation and/or certification processes normally examine
the generation of assurance evidence. The application of process models, and the
appraisal (assessment/evaluation) conducted as part of an organizational evaluation, not
only focuses improvement efforts on weaknesses in particular disciplines or process
areas, but also provides confidence in the assurance evidence generation processes that
are used in product evaluation and system certification.

References

[Davis] Davis, Noopur, and Mullaney, Julia, “The Team Software Process in Practice: A
Summary of Recent Results,” Technical Report CMU/SEI-2003-TR-014, September
2003.

[Goldenson] Goldenson, Dennis R. and Gibson, Diane L. “Demonstrating the Impact and
Benefits of CMMI”, Special Report CMU/SEI-2003-SR-009, The Software Engineering
Institute, Carnegie Mellon University, 2003

The Team Software
Process®" (TSP*Y)

Noopur Davis
Julia Mullaney

February 2004

Table of Contents

Acknowledgements ... e s e e nnnan v
EXeCULIVe SUMMANY ... s Vi
1 18 e X 10 1 oY 8
2 TSP OVOIVIBW ..c.uiieuireeirrasirensrensirresssrensrenssrenssrrnsssrssssrenssrenssrenssrrnnsssensssenssrenns 10
2.1 HISIOIY . 10

2.2 What Makes PSP and TSP WOIKoooniieiee e, 11

2.3 TE P P ..o 12
2.3.1 PSP Measurement FrameworkK..........c.ovveeeieeeeieeeeeeeeeeeeeeeeee 14

2 T TSP e e e 15
241 The TSP LAUNCKN ... 16

2.4.2 TSP Measurement Frameworkoooe oo 19

2.4.3 The TSP Introduction Strategy..........ccccceeeeeiiii, 20

3 B IS T gl (=TT 1 21
T B B =1 = RS Yo 10| o7 < TP TR 21

B2 R BSUIS et e e 22
3.2.1 Schedule DeViationoeee e 22

3.2.2 QUANTY et 23

3.2.3 QUAlItY IS Free...ccciiiiiieeeeee e 25

3.3 Summarized Project Data............ooooiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 25

4 The Team Software Process for Secure Software Development................ 27
=Y (=1 (=] 3 Lo = Y- 3 29

The Team Software Process i

List of Figures

Figure 1: Elements of the PSP and the TSP ... 12
Figure 2: The PSP COUISEuuiiiiiiiiiii ettt 13
Figure 3: The TSP LaunChccooiiiiiiiii 16
Figure 4: The TSP Launch Productscccooo 19
Figure 5: TSP Introduction Timelinec..oooo e, 20
Figure 6: Average Defect Density of Delivered Softwareccccccceiiiiiniinnen. 24
ii The Team Software Process

List of Tables

Table 1: Schedule Deviationoooiiiiiiii e 23
Table 2: QUANILY ..ooeeeee e 24
Table 3: Reductions In System Test Defects and System Test Duration.............. 25
Table 4: Improvements in Productivity and Cost Of Qualitycccceeeeeeeennnn. 25
Table 5: TSP-Secure Pilot RESUILScuiiiiiiii e 28

The Team Software Process iii

The Team Software Process

Acknowledgements

This paper is derived from the Software Engineering Institute’s Technical Report titled “The
Team Software Process in Practice: A Summary of Recent Results”, CMU/SEI-2003-TR-
014,

http://www.sei.cmu.edu/publications/documents/03.reports/03tr014.htm

1. All copyrights of the original paper apply.

The Team Software Process v

Executive Summary

Most software organizations critically need better cost and schedule management, quality
management, and cycle-time reduction. This report demonstrates that teams using the Team
Software Process™ (TSP) meet these critical business needs by delivering essentially defect'-
free software on schedule and with better productivity.

The report starts with an overview of the TSP to provide the context for the results reported.
These results include the benefits realized by a first-time TSP team, a summary of data from
20 TSP projects in 13 organizations, and stories from people who have used the TSP.

These TSP teams delivered their products an average of 6% later than they had planned. The
schedule error for these teams ranged from 20% earlier than planned to 27% later than
planned. This compares favorably with industry data that show over half of all software pro-
jects were more than 100% late or were cancelled. These TSP teams also improved their
productivity by an average of 78%.

The teams met their schedules while producing products that had 10 to 100 times fewer de-

fects than typical software products. They delivered software products with average quality
levels of 5.2 sigma, or 60 defects per million parts (lines of code). In several instances, the

products delivered were defect free.

The report concludes with an overview of the Team Software Process for Secure Software
Development (TSP-Secure).

SM Team Software Process, TSP, Personal Software Process, and PSP are service marks of the Software
Engineering Institute.
" A defect is anything that leads to a fix in a product. A defect may be a requirements defect, design
defects, security defects, usability defects, or an implementation defect.

Vi The Team Software Process

The Team Software Process vii

1 Introduction

The success of organizations that produce software-intensive systems depends on well-
managed software development processes. Implementing disciplined software methods, how-
ever, is often challenging. Organizations seem to know what they want their teams to be do-
ing, but they struggle with zow to do it. The Team Software Process™ (TSP*™), coupled with
the Personal Software Process®™ (PSP*™), was designed to provide both a strategy and a set
of operational procedures for using disciplined software process methods at the individual
and team levels. Organizations that have implemented the TSP and PSP have experienced
significant improvements in the quality of their software systems and reduced schedule de-
viation [Ferguson 99, McAndrews 00].

The report starts with an overview of the PSP and the TSP to provide a context for the results
reported. This is followed by a summary of the performance of more than 20 projects from
13 organizations that have used the PSP and the TSP. The report concludes with a brief over-
view of the Team Software Process for Secure Software Development.

SM " Ppersonal Software Process, PSP, Team Software Process, and TSP are service marks of Carnegie
Mellon University.

2 TSP Overview

The objective of the TSP is to create a team environment that supports disciplined individual
work and builds and maintains a self-directed team. The TSP guides self-directed teams in
addressing critical business needs of better cost and schedule management, effective quality
management, and cycle-time reduction. It defines a whole product framework of customiza-
ble processes and an introduction strategy that includes building management sponsorship,
training for managers and engineers, coaching, mentoring, and automated tool support.

The TSP can be used for all aspects of software development: requirements elicitation and
definition, design, implementation, test, and maintenance. The TSP can support multi-
disciplinary teams that range in size from two engineers to over a hundred engineers. It can
be used to develop various kinds of products, ranging from real-time embedded control sys-
tems to commercial desktop client-server applications.

The TSP builds on and enables the PSP. The PSP shows engineers how to measure their
work and use that data to improve their performance. The PSP guides individual work. The
TSP guides teamwork and creates an environment in which individuals can use the PSP to
excel. Data from early pilots show that the TSP has been successful in addressing critical
business needs [Ferguson 99, McAndrews 00].

2.1 History

In the 1980s, Watts Humphrey guided the development of the Capability Maturity Model® for
Software (SW-CMM®). An early misperception of SW-CMM by some people was that it did
not apply to small organizations or projects. In order to illustrate its application to small or-
ganizations, Humphrey took on the challenge to apply the SW-CMM to the smallest organi-
zation possible: an organization of a single individual. From 1989 to 1993, Humphrey wrote
more than 60 programs and more than 25,000 lines of code (LOC). In developing these 60
programs, Humphrey used all of the applicable SW-CMM practices up through Level 5. He
concluded that the management principles embodied in the SW-CMM were just as applicable

¥ Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

to individual software engineers. The resulting process was the PSP. He subsequently
worked on corporate and academic methods to train others to use the PSP technology.

As engineers started applying their PSP skills on the job, it was soon discovered that they
needed a supportive environment that recognized and rewarded sound engineering methods.
In many organizations, the projects in crisis receive all the attention. Projects and individuals
who meet commitments and do not have quality problems often go unnoticed. Humphrey
found that if managers do not provide a supportive environment and do not ask for and con-
structively use PSP data, engineers soon stop using the PSP. Humphrey then developed the
Team Software Process to build and sustain effective teams.

2.2 What Makes PSP and TSP Work

Typical software projects are often late, over budget, of poor quality, and difficult to track.
Engineers often have unrealistic schedules dictated to them and are kept in the dark as to the
business objectives and customer needs. They are required to use imposed processes, tools,
and standards, and often take shortcuts to meet schedule pressures. Very few teams can con-
sistently be successful in this environment. As software systems get larger and more com-
plex, these problems only get worse.

The best projects are an artful balance of conflicting forces. They must consider business
needs, technical capability, and customer desires. Slighting any facet can jeopardize the suc-
cess of the project. To balance these conflicting forces, teams must understand the complete
context for their projects. This requires self-directed teams that

o understand business and product goals

e produce their own plans to address those goals

e make their own commitments

e direct their own projects

e consistently use the methods and processes that they select

e manage quality

Figure 1 illustrates how the PSP and TSP build and maintain self-directed teams. Successful
self-directed teams require skilled and capable individual team members. Capable team
members are critical because each instruction of a software module is handcrafted by an indi-
vidual software engineer. The engineer’s skills, discipline, and commitment govern the qual-
ity of that module and the schedule on which that module is produced. In turn, the modules
come together to compose software products. Therefore, a software product is a team effort.
The product’s modules are designed, built, integrated, tested, and maintained by a team of
software engineers whose skills, discipline, and commitment govern the success of the pro-
ject.

11

Team communication
Team Team coordination

Management Project tracking
Risk analysis

TSP

Goal setting
Team Role assignment

Building Tailored team process
Detailed balanced plans

Team Process discipline
Member .Per.formance measures

A Estimating & planning skills
Skills Quality management skills

PSP

Figure 1: Elements of the PSP and the TSP

The objective of the PSP is to put software professionals in charge of their work and to make
them feel personally responsible for the quality of the products they produce. The objectives
of the TSP are to provide a team environment that supports PSP work and to build and main-
tain a self-directed team. PSP and TSP are powerful tools that provide the necessary skills,
discipline, and commitment required for successful software projects.

2.3 The PSP

The PSP is based on the following planning and quality principles [Humphrey 00]:

e Every engineer is different; to be most effective, engineers must plan their work and they
must base their plans on personal data.

e To consistently improve their performance, engineers must measure their work and use
their results to improve.

e To produce quality products, engineers must feel personally responsible for the quality of
their products. Superior products are not produced by accident; engineers must strive to
do quality work.

e It costs less to find and fix defects earlier in a process than later.
o [t is more efficient to prevent defects than to find and fix them.

o The right way is always the fastest and cheapest way to do a job.

Today, most software engineers do not plan and track their work, nor do they measure and
manage product quality. This is not surprising, since engineers are neither trained in these
disciplines nor required to use them. The dilemma is that until they try using disciplined
methods, most software engineers do not believe that these methods will work for them.
They won’t try these methods without evidence, and they can’t get the evidence without try-
ing the methods. The PSP addresses this dilemma by putting an engineer in a course envi-

ronment to learn the methods. The engineers use the methods in the course and can see from
their personal and class data that the methods can and do work for them.

The PSP course is composed of ten programming assignments and five reports. The PSP
methods are introduced in six upwardly compatible steps, PSP0O through PSP 2.1 (see Figure
2). The engineers write one or two programs at each step and gather and analyze data on
their work. Then they use their data and analyses to improve their work.

PSP2 PSP2.1 Introduces quality
/v :Code reviews | Designtemplates| manggement and design

*Design reviews T

PSP1.1 L
PSP1 “Task planning Introduces estimating and
-Size estimating |+ Schedule planning planning
/' «Test report
PSPO0.1
«Codi tandard T
PSP0 Prosess mprovement | INtroduces process discipline

B s proposal and measurement
*Size measurement

|

Figure 2: The PSP Course

PSP0 and PSP0.1. Engineers write three programming assignments using PSP0 and PSPO0.1.
The objective is for the engineer to learn how to follow a defined process and to gather basic
size, time, and defect data.

PSP1 and PSP1.1. Once engineers have gathered some historical data, the focus moves to
estimating and planning. Engineers write three programming assignments using PSP1 and
PSPI1.1. Engineers learn statistical methods for producing size and resource estimates, and
use earned value for schedule planning and tracking.

PSP2 and PSP2.1. Once engineers have control of their plans and commitments, the focus
of the course then changes to quality management. Engineers write four programming as-
signments using PSP2 and PSP2.1. Engineers learn early defect detection and removal
methods and improved design practices.

Mid-term and final reports. After the first six assignments have been completed, engineers
write mid-term reports, and after all ten programming assignments have been completed, en-

gineers write final reports. These reports document the engineers’ analyses of their perform-

ance. Engineers are required to analyze their data to understand their current performance, to
define challenging yet realistic goals, and to identify the specific changes that they will make
to achieve those goals.

13

By the end of the course, engineers are able to plan and control their personal work, define
processes that best suit them, and consistently produce quality products on time and for
planned costs.

In 1997, a study was conducted to analyze the impact of PSP training on 298 software engi-
neers [Hayes 97]. This study found that engineers were able to significantly improve their
estimating skills and the quality of the software products they produced. Engineers were able
to achieve these notable improvements without negatively affecting their productivity. In
terms of product quality and schedule variance, individuals were able to perform at a level
that one would expect from a SW-CMM Level 5 organization.

The 1997 study was recently repeated on a much larger data set of over a thousand software
engineers. The larger data set represents a more diverse group of instructors, engineers, pro-
gramming languages, development environments, etc. The purpose of the replication was to
demonstrate the statistically significant improvements in estimating and quality practices, i.e.,
to answer the question, can engineers learn to use their data to significantly improve their
performance? The results from this replication are essentially the same as in the original
study, with some minor differences. The findings are presented in an SEI technical report
[Davis].

2.3.1 PSP Measurement Framework

Engineers collect three basic measures: size, time, and defects. For the purposes of the PSP
course, size is measured in lines of code (LOC). In practice, engineers use a size measure
appropriate to the programming language and environment they are using; for example, num-
ber of database objects, number of use cases, number of classes, etc. In order to ensure that
size is measured consistently, counting and coding standards are defined and used by each
engineer. Derived measures that involve size, such as productivity or defect density, use new
and changed LOC (N LOC) produced only. “New and changed LOC” is defined as lines of
code that are added or modified; existing LOC is not included in the measure. Time is meas-
ured as the direct hours spent on each task. It does not include interrupt time. A defect is
anything that detracts from the program’s ability to completely and effectively meet the users
needs. A defect may be a specification defect, a design defect, or an implementation defect.
A defect is an objective measure that engineers can identify, describe, and count.

B

Engineers use many other measures that are derived from these three basic measures. Both
planned and actual data for all measures are gathered and recorded. Actual data are used to
track and predict schedule and quality status. All data are archived to provide a personal his-
torical repository for improving estimation accuracy and product quality. Derived measures
include:

e cstimation accuracy (size/time)

prediction intervals (size/time)
time in phase distribution
defect injection distribution
defect removal distribution
productivity

reuse percentage

cost performance index
planned value

earned value

predicted earned value
defect density

defect density by phase
defect removal rate by phase
defect removal leverage
review rates

process yield

phase yield

failure cost of quality (COQ)
appraisal COQ
appraisal/failure COQ ratio

2.4 The TSP

The TSP is based on the following principles:

The engineers know the most about the job and can make the best plans.
When engineers plan their own work, they are committed to the plan.
Precise project tracking requires detailed plans and accurate data.

Only the people doing the work can collect precise and accurate data.
To minimize cycle time, the engineers must balance their workload.

To maximize productivity, focus first on quality.

The TSP has two primary components: a team-building component and a team-working or

management component. The team-building component of the TSP is the TSP launch, which

puts the team in the challenging situation of developing their plan.

15

“Successful team-building programs typically expose a group to a challenging situation that
requires cooperative behavior of the entire group [Morgan 93]. As the group’s members learn
to surmount this challenge, they generally form a close-knit and cohesive group. The TSP
follows these principles to mold development groups into self-directed teams. However, in-
stead of using an artificial situation like rock climbing or white water rafting, it uses the team
launch. The challenge in this case is to produce a detailed plan for a complex development

job and then to negotiate the required schedule and resources with management.””

2.41 The TSP Launch

The first step in developing a team is to plan the work, which is done during the TSP launch.
The launch is led by a qualified team coach. In a TSP launch, the team reaches a common
understanding of the work and the approach they will take, produces a detailed plan to guide
the work, and obtains management support for the plan. A TSP launch is composed of nine
meetings over a four-day period, as shown in Figure 3.

Day 1 Day 2 Day 3 Day 4
1. Establish 4. Build overall 7. Conduct 9. Hold
product and .
. and risk — management
business .
near-term assessment review
goals
plans
2. Assign roles 5. Develop 8. Prepare
. . management Launch
and define the quality . L
briefing and postmortem
team goals plan I
aunch report
3. Produce 6. Build
T — india\::gual A qualified TSP coach guides the team
anztra:gggss consolidated fchrough a defined process to develqp
P plans its plan and to negotiate that plan with
L L management.

Figure 3: The TSP Launch

The first step in the launch is for the team to understand what they are being asked to do.

This is accomplished in meeting 1 by having marketing (or an appropriate customer represen-
tative) and management meet with the team. Marketing describes the product needs. Man-
agement describes the business needs and any resources and constraints under which the team

2 Personal correspondence with Watts Humphrey.

will have to work. This is also a chance for management to motivate the team. The team has
the opportunity to ask any questions they might have about the product or business needs. In
the next seven meetings, the team develops an engineering plan to meet the business needs.

In meeting 2, the team sets its goals and organizes itself. The team reviews the business and
product goals presented in meeting 1, and derives a set of measurable team goals. Next, the
team also decides which team members will take on which routine team management tasks.

These tasks are designated by manager roles:

e customer interface manager
e design manager

e implementation manager

e test manager

e planning manager

e process manager

e support manager

e quality manager

Each team member selects at least one role. For teams with more than eight members, roles
are shared. With smaller teams, team members may select multiple roles.

In launch meeting 3, the team determines its overall project strategy. The team members
produce a conceptual design, devise the development strategy, define the detailed process
they will use, and determine the support tools and facilities they will need. They list the
products to be produced.

In meeting 4, the team develops the team plan. This is done by estimating the size of the
products to be produced, identifying the general tasks needed to do the work and estimating
their effort, defining the tasks for the next development cycle to a detailed work-step level,
and drawing up a schedule of the team’s availability week by week through the completion of
the project.

In meeting 5, the team defines a plan to meet its quality goals. The team does this by estimat-
ing the number of defects injected and removed in each phase and then calculating the defect
density of the final product. The team ensures that the tasks needed to achieve its quality
goal are included in the team plan. The quality plan provides a measurable basis for tracking
the quality of the work as it is done.

In meeting 6, tasks on the team plan for the next cycle of work are allocated to team mem-
bers, and each team member creates an individual plan. In building their plans, the engineers

17

refine the team estimates using their own historical data, break large tasks into smaller tasks
to facilitate tracking, and refine their hours available per week to work on this project. The
team meets again to review the individual task plans and to ensure that the work load is bal-
anced. The individual plans are consolidated into a team plan. The team uses this plan to
guide and track its work during the ensuing cycle.

The team conducts a risk assessment in meeting 7. Risks are identified and their likelihood
and impact are assessed. The team defines mitigation and contingency plans for high-priority
risks. Risks are documented in the team plan and assigned to team members for tracking.

Meeting 8 is used to develop a presentation of the team’s plan to management. If the team’s
plan does not meet management goals, the team includes alternative plans that come closer to
meeting management’s goals. For instance, the team might be able to meet a schedule by
adding resources to the team or by reducing the functionality delivered.

By the end of the launch, the team has formed a cohesive unit and created a plan that bal-
ances the needs of the business and customer with a feasible technical solution. The team has
agreed on the technical solution that they propose to build and understands how that product
will satisfy business and customer needs. The team agrees on the strategy and process for
developing the product. The team has a detailed plan that it can use to guide and track the
work. Team members all know who is responsible for which tasks and areas. Everyone on
the team understands and agrees with the quality goal, and the team can monitor progress
against that goal. Finally, the team has explored all of the things that might go wrong and has
done its best to mitigate those risks. In short, the TSP launch provides a team with all of the
conditions necessary to become a self-directed team.

In meeting 9, the team presents the plan to management for their approval to start the work.
The team explains the plan, describes how it was produced (Figure 4), and demonstrates that
all team members agree with and are committed to the plan. If the team has not met man-
agement’s objectives, it presents one or more alternative plans. The principal reason for
showing alternative plans is to provide management with options to consider in case the
team’s plan does not meet the organization’s business needs.

Business needs
Management goals
Product requirements

s

* Team goals * Team + Task plan + Team « Quality « Risks

* Conceptual strategy - Schedule roles plan « Alternative
design * Team plan - Task plans plans

* Planned products defined « Earned- « Earned-

» Size estimates process value plan value plan

Figure 4: The TSP Launch Products

At the end of the TSP launch, the team and management agree on how the team will proceed
with the project. The team has a plan it believes in, is committed to, and can track against.
The launch not only creates a winning plan, it builds a cohesive team.

The TSP includes guidance for ensuring that the energy and commitment from a TSP launch
are sustained as the team does its work. A TSP coach works with the team and the team
leader to help the team to collect and analyze data, follow the process defined by the team,
track issues and risks, maintain the plan, track progress against goals (especially the team’s
quality goal), and report status to management.

2.4.2 TSP Measurement Framework

The TSP uses the same basic measures of the PSP—size, time, and defects—and adds task
completion dates. For all measures, planned and actual data are collected at the individual
level. The TSP measurement framework consolidates individual data into a team perspective.
The data collected are analyzed weekly by the team to understand project status against
schedule and quality goals. The TSP measurement framework also makes available other
views of the data, such as by product or part, phase, task, week, day, etc. Personal and team
data are archived to provide a repository of historical data for future use.

The team conducts weekly meetings to report progress against their plans and to discuss team
issues. They also use their TSP data to make accurate status reports to management on a regu-
lar basis. Because management can rely on the data, management’s job changes from con-
tinuously checking project status to ensuring that there are no obstacles impeding the team’s
progress. This also allows management to make sound business decisions, since they are
based on accurate engineering data. For example, when management is confident in the

19

team’s estimate, management can decide how to allocate resources to obtain a schedule that
best meets the business needs. When a team commitment is in jeopardy, the team solves the
problem or raises the issue with management as early as possible. In all cases and at all lev-
els, decisions are made based on data.

2.4.3 The TSP Introduction Strategy

The SEI has been transitioning TSP into organizations since 1997 and has gained significant
experience with issues surrounding the introduction of this technology. Based on these ex-
periences, the SEI has defined an introduction strategy (Figure 5) and has developed support-
ing materials to facilitate the implementation of that strategy.

The introduction strategy starts with trial use. The TSP is first piloted on several small pro-
jects to evaluate both the transition approach and the impact of TSP on the organization. The
pilots also build the understanding, sponsorship, and support needed for broad acceptance of
the TSP in the organization.

Task Q1 Q2 Q3 Q4 Q5 Q6
Executive training/kickoff session X

Select participants, develop schedule X

Train managers, engineers, instructors X X X

Conduct TSP pilots X X

Train transition agents X X

Plan and initiate roll-out X e—)

Figure 5: TSP Introduction Timeline

All team members and all of their management are trained prior to the start of the pilot effort.
The senior management attends a one-and-a-half-day executive seminar and planning ses-
sion; the middle and line management attend three days of training; the engineers complete
the two-week PSP for Engineers course. The pilot teams are then started with a launch, and
they begin to use the TSP process as they do project work. Pilot projects can rapidly demon-
strate the benefits of using the TSP, and results from the pilot projects can be used to tailor
and improve both the TSP and the introduction strategy.

3 TSP Results

3.1 Data Source

The data summarized in this section come from all TSP presentations developed for the
Software Engineering Process Group (SEPG) conferences (http://www.sei.cmu.edu/sepg) and
the SEI Software Engineering Symposiums for the years 2001 through 2003 [Ciurczak 02,
Davis 01, Janiszewski 01, Narayanan 02, Pracchia 03, Riall 02, Serrano 03, Schwalb 03,
Sheshagiri 02, Webb 02].> Detailed data submitted to the SEI by the teams represented in
those presentations was also examined. The data presented here represent thirteen organiza-
tions and over twenty projects from these organizations. Some organizations presented
summary data from more than one project without specifying the number of projects, so the
exact number of projects could not be determined.

—

ABB, Inc.

Advanced Information Services

Bettis/KAPL

Cognizant Technology Solutions

Electronic Brokering Services (EBS) Dealing Resources, Inc.
Hill Air Force Base

Honeywell

Microsoft Corporation

0 0 =N ok WD

Naval Air Warfare Center
. Quarksoft, S.C.
. SDRC
. United Defense, LP

—_ = = =
W N = O

. Xerox

Also Ciurczak, John, “The Quiet Quality Revolution at EBS Dealing Re-sources, Inc.”, Strickland,
Keith, “The Road Less Traveled” and Webb, Dave, “Implementing the Team Software Process.”
Submitted for presentation at the Software Engineering Institute’s Software Engineering Sympo-
sium, 2001.

21

3.2 Results

The data presented here are from a diverse group of organizations. Product size range is from
600 LOC to 110,000 new and changed LOC produced, team size range is from 4 team mem-
bers to 47 team members, and project duration range is from a few months to a couple of
years. Application types include real-time software, embedded software, IT software, client-
server applications, and financial software, among others. Several programming languages
and development environments were used (mostly third and fourth generation languages and
development environments). We did not attempt to classify the data based on any of these
differences. Instead, we gathered all the measures reported for each organization and calcu-
lated the range and average of the values reported. The ranges and averages do not include
data from every project, as not all organizations reported the same measures.

We have also tried to compare the TSP projects presented here with typical projects in the
software industry. This comparison is rather difficult to make, since there are not much data
available on some of the measures tracked in the TSP. For schedule data, we used the Stan-
dish Group Chaos Report.* For time-in-phase data, we used several sources, including sev-
eral estimation models, data from the NASA Software Engineering Laboratory [SEL 93], and
pre-TSP data from some of the organizations we have worked with [Humphrey 02, Jones 95a,
Jones 96, Jones 00]. For quality data, we mostly used Capers Jones as our source [Jones 95a,
Jones 96, Jones 00], backed by pre-TSP data from some organizations we have worked with,
as well as data from Watts Humphrey [Humphrey 02].

Jones uses function points as the size measure for normalizing defects (defects/function
point). Since the TSP uses LOC as the default size measure, we had to convert function
points to LOC. We used the “backfiring” method he described [Jones 95b] for this conver-
sion. Jones suggests using a default of 80 LOC per function point for third-generation lan-
guages, and a default of 20 LOC per function point for fourth-generation languages. How-
ever, we chose to be conservative and used a default of 100 LOC per function point, as Jones
does when discussing non-specific procedural languages.

3.2.1 Schedule Deviation

A premise of the TSP is to start with the best plan possible, using sound estimating and plan-
ning methods, and then update the plan as needed when you learn more about the work, or if
the work itself changes. Because of the constant awareness of plan status, and because teams
adjust their plans based on the plan status, TSP teams are able to reduce schedule error. The
schedule data presented in Table 1 shows that TSP teams missed their schedule by an average
of 6%.

* “CHAOS 94 — Charting the Seas of Information Technology.” The Standish Group International,

Inc., 1994.

Typical Projects
Measure TSP Projects
(Standish Group Chaos Report)
More than 200% late
6%
101%-200% late Cancelled
Schedule error average 6% 16% 29%
51%-100% late

9%
21%-50% late

8%

Schedule error range -20% to 27% 0 :
Less than 20% late On-Tolme
5% 26%

Table 1: Schedule Deviation

3.2.2 Quality

One reason TSP teams are able to meet their schedule commitment is that they plan for qual-
ity and deliver high-quality products to test. This shortens time spent in test, which is usually
the most unpredictable activity in the entire development life cycle. The data in Table 2 show
that TSP teams are delivering software that is more than two orders of magnitude better in
quality than typical projects (0.06 defects/KLOC versus 7.5 defects/KLOC). Products being
developed by TSP teams have an average of 0.4 defects/KLOC in system test, with several
teams reporting no defects found in system test. TSP teams spent an average of 4% of their
total effort in post-development test activities; the maximum effort that any team spent in test
was 7%. Similarly, the average percentage of total schedule (project duration in calendar
time) spent in post-development test activities was 18%. Typical non-TSP projects routinely
spend 40% of development effort and schedule in post-development test activities. The 0.5
average days to test a thousand lines of code is a result of the higher quality of code entering
system test. Some teams report that system test time was essentially equal to defect-free test
time (time it takes to verify that the software works). Average failure COQ (percentage of
total effort spent in failure activities) is much below the 50% typically found in the software
industry.

23

Measure TSP Projects Typical Projects
Average Average
Range
System test defects (defects/KLOC) 0.4 15
0t00.9
Delivered defects (defects/KLOC) 0.06 7.5
0t00.2
System test effort (% of total effort) 4% 40%
2% to 7%
System test schedule (% of total duration) 18% 40%
8% to 25%
Duration of system test (days/KLOC) 0.5 NA®
0.21t00.8
Failure COQ 17% 50%
4% to 38%
Table 2: Quality
8 -
7 -
6 -
QO 59
o
ur}
X
8 4
3]
L
8 3
2 -
1 -
o —
CMM Level 1 | CMM Level 2 | CMM Level 3 | CMM Level 4 | CMM Level 5 TSP
‘! Defects/KLOC 7.5 6.24 4.73 2.28 1.05 0.06

Figure 6: Average Defect Density of Delivered Software

Figure 6 shows the quality of delivered software classified by CMM Level [Jones 00], com-
pared to the TSP teams presented in this report. These data show that TSP teams produced
software an order of magnitude higher in quality than projects from organizations rated at

CMM Level 5.

5

This data was not available.

Some organizations reported the benefits of the TSP compared to previous projects (Table 3).
They reported an average of 8 times reduction in system test defect density when using the
TSP. System test duration was reduced an average of 4 times with the TSP: for example, a
TSP project spending 0.5 days/KLOC in system test would have been spending 2.0
days/KLOC prior to using the TSP.

Measure TSP Projects
Average
Range

System test defect reduction 8 times

4 times to 10 times

System test duration reduction 4 times
2 times to 8§ times

Table 3: Reductions In System Test Defects and System Test Duration

3.2.3 Quality is Free

A frequent concern expressed about disciplined methods is the perceived adverse impact on
productivity. The data in Table 4 show that TSP projects improve their productivity and at
the same time reduce their failure COQ (percentage of total effort spent in failure activities)
and their total COQ (percentage of total effort spent in failure and appraisal activities). The
main reason for this increase in productivity is the reduced time spent in test because of
higher quality products being delivered into test, as shown in Table 2.

Measure Average
Productivity improvement 78%
Failure COQ reduction 58%
Total COQ reduction 30%

Table 4: Improvements in Productivity and Cost Of Quality

3.3 Summarized Project Data

The results summarized in this section are remarkable when compared to typical software
projects. The Standish Group reported in 1999 that 74% of all projects were not successful.’
The Standish group also reported in 1996 that unsuccessful projects accounted for over half

6 “CHAOS: A Recipe for Success. Project Resolution: The 5-Year View.” The Standish Group
International, Inc., 1999.

25

(53%) of total spending on software projects.” And in 1994, the same group reported that for
the unsuccessful projects, the average cost overrun was 189% and the average time overrun
was 222%. Typical projects spend 40% to 60% of total project time on test, and typical de-
fect densities of delivered products range from 1 to 10 defects/KLOC [Humphrey 02].

7 “CHAOS ’97 — The Changing Tide.” A Standish Group Research Note. The Standish Group In-
ternational, Inc., 1997.

4 The Team Software Process for Secure
Software Development

The Team Software Process for Secure Software Development (TSP-Secure) builds on the
TSP by adding secure development practices to the planning, measurement, and quality man-
agement practices provided by the TSP.

The problem with producing secure software is that although high quality is a pre-requisite, it
is not enough. Testing is not enough, inspections and reviews are not enough, use of tools is
not enough, design principles are not enough, and risk management is not enough. First,
there is a need for a process that combines all of the above in a planned, managed, and meas-
ured framework. The process must use the best software engineering practices that produce
near defect-free software, best security practices, best management practices, all supported by
a measurement framework. Second, there is a need for security and software engineering
education for software developers.

The research objectives of TSP-Secure are to reduce or eliminate software vulnerabilities that
result from software design and implementation defects, and to provide the capability to pre-
dict the likelihood of latent vulnerabilities in delivered software.

Areas of exploration include vulnerability analysis by defect type, operational process for
secure software production, predictive process metrics and checkpoints, quality management
practices for secure programming, design patterns for common vulnerabilities, verification
techniques, and removing vulnerabilities in legacy software.

TSP-Secure incorporates the following security practices into the TSP: education on com-
mon causes of vulnerabilities, intrusion aware design, state machine design and verification,
secure inspections and reviews, code analysis tools, security risk analysis and management,
and secure testing practices.

TSP-Secure is still under development, but an initial proof-of-concept pilot produced encour-
aging results. A team of eight developers produced an application with 30,000 new and
changed LOC. No security coding defects were found during system test, corporate security
audits, or in several months of use since the product was released.

27

Phase Post code complete defects
Integration Test 4

System Test 10

User Acceptance Test 3

Security code defects 0

Total Defects 17

Table 5: TSP-Secure Pilot Results

References

All URLs are valid as of the publication date of this report.

[Ciurczak 02] Ciurczak, John. “Team Software Process (TSP) Experiences in the
Foreign Exchange Market.” SEPG 2002 (CD-ROM). Phoenix, AZ,
February 18-21, 2002. Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University, 2002.

[Davis 01] Davis, Noopur; Humphrey, Watts; & McHale, Jim. “Using the TSP
to Accelerate CMM-Based Software Process Improvement.” SEPG
2001: Focusing on the Delta (CD-ROM). New Orleans, LA, March
12-15, 2001. Pittsburgh, PA: Software Engineering Institute, Carne-
gie Mellon University, 2001.

[Ferguson 99] Ferguson, P.; Leman, G; Perini, P; Renner, S.; & Seshagiri, G. Sofi-
ware Process Improvement Works! (CMU/SEI-99-TR-027,
ADA371804). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 1999. <http://www.sei.cmu.edu
/publications/documents/99.reports/99tr027/99tr02 7abstract.html>.

[Hayes 97] Hayes, W. & Over, J. W. The Personal Software Process (PSP): An
Empirical Study of the Impact of PSP on Individual Engineers.
(CMU/SEI-97-TR-001, ADA335543). Pittsburgh, PA: The Software
Engineering Institute, Carnegie Mellon University, 1997.
<http://www.sei.cmu.edu/publications/documents/97.reports
/97tr001/97tr001abstract.html>.

[Humphrey 95] Humphrey, Watts S. A Discipline for Software Engineering. Read-
ing, MA: Addison-Wesley, 1995.

29

[Humphrey 00]

[Humphrey 02]

[Janiszewski 01]

[Jones 95a]

[Jones 95b]

[Jones 96]

[Jones 00]

[McAndrews 00]

[Morgan 93]

Humphrey, W. The Personal Software Process® (PSP*)
(CMU/SEI-2000-TR-022, ADA387268). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2000.
<http://www.sei.cmu.edu/publications/documents/00.reports
/00tr022.html>.

Humphrey, Watts S. Winning with Sofiware: An Executive Strategy.
Reading, MA: Addison-Wesley, 2002.

Janiszewski, Steve & Myers, Chuck. “Making Haste Deliberately.”
SEPG 2001: Focusing on the Delta (CD-ROM). New Orleans, LA,
March 12-15, 2001. Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2001.

Jones, Capers. Patterns of Software Systems Failure and Success.
Boston, MA: International Thomson Computer Press, 1995.

Jones, Capers. Backfiring: Converting Lines of Code to Function
Points. IEEE Computer 28, 11 (November 1995): 87-88.

Jones, Capers. Applied Software Measurement. New York, NY:
McGraw-Hill 1996.

Jones, Capers. Software Assessments, Benchmarks, and Best Prac-
tices. Reading, MA: Addison-Wesley, 2000.

McAndrews, D. The Team Software Process®': An Overview and
Preliminary Results of Using Disciplined Practices (CMU/SEI-
2000-TR-015, ADA387260). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2000.
<http://www.sei.cmu.edu/publications/documents/00.reports
/00tr015.html>.

Morgan, Ben B., Jr.; Salas, Eduardo; & Glickman, Albert S. “An
Analysis of Team Evolution and Maturation.” Journal of General
Psychology 120, 3: 277-291.

[Narayanan 02]

[Pracchia 03]

[Riall 02]

[Schwalb 03]

[SEL 93]

[Serrano 03]

[Sheshagiri 02]

[Webb 02]

Narayanan, Sridhar. “People — Process Synergy.” SEPG 2002 (CD-
ROM). Phoenix, AZ, February 18-21, 2002. Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon University, 2002.

Pracchia, Lisa & Hefley, Bill. “Accelerating SW-CMM Progress
Using the TSP.” SEPG 2003: Assuring Stability in a Global Enter-
prise (CD-ROM). Boston, MA, February 24-27, 2003. Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
2003.

Riall, Cary & Pavlik, Rich. “Integrating PSP, TSP, and Six Sigma.”
SEPG 2002 (CD-ROM). Phoenix, AZ, February 18-21, 2002. Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2002.

Schwalb, Jeff & Hodgins, Brad. “Team Software Process for Main-
tenance Projects.” SEPG 2003: Assuring Stability in a Global En-
terprise (CD-ROM). Boston, MA, February 24-27, 2003. Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2003.

Condon, S.; Regardie, M.; Stark, M.; & Waligora, S. Cost and
Schedule Estimation Study Report (Software Engineering Labora-
tory Series SEL-93-002). Greenbelt, MD: NASA Goddard Space
Flight Center, 1993.

Serrano, Miguel A. & Montes de Oca, Carlos. “Using TSP in an
Outsourcing Environment.” SEPG 2003: Assuring Stability in a

Global Enterprise (CD-ROM). Boston, MA, February 24-27, 2003.

Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2003.

Sheshagiri, Girish. “It’s Hard To Believe Unless You Do It.” SEPG

2002 (CD-ROM). Phoenix, AZ, February 18-21, 2002. Pittsburgh, PA:

Software Engineering Institute, Carnegie Mellon University, 2002.

Webb, Dave. “Managing Risk with the Team Software Process.”
SEPG 2002 (CD-ROM). Phoenix, AZ, February 18-21, 2002. Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2002.

31

Volume II
Software Process Subgroup
Task Force on Security across the Software Development Lifecycle

National Cyber Security Summit
March 2004

Edited by Samuel T. Redwine, Jr. and Noopur Davis

